就是运用\(Lucas\)推一个柿子

首先是前置芝士\(Lucas\)定理

\[C_{n}^{m}\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p
\]

至于证明

我建议去问一下Lucas本人

至于这道题,我们要求的是这个柿子

\[\sum_{i=0}^kC_{n}^i\%p
\]

于是我们设\(f(n,k)=\sum_{i=0}^kC_{n}^i\)

我们就可以化柿子啦

\[f(n,k)=\sum_{i=0}^kC_{n}^i
\]

\[\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\sum_{i=0}^kC_{n/p}^{i/p}*C_{n\%p}^{i\%p}
\]

这个东西一看就很熟悉,\(n/p\)啊,显然跟整除分块差不多啊

\[=C_{n/p}^0\sum_{i=0}^{p-1}C_{n\%p}^i+C_{n/p}^1\sum_{i=0}^{p-1}C_{n\%p}^i+...+C_{n/p}^{k/p}\sum_{i=0}^{k\%p}C_{n\%p}^i
\]

前面有\(0\)到\(k/p-1\)这些个整块,于是我们可以将\(\sum_{i=0}^{p-1}C_{n\%p}^i\)提出来

变成

\[\sum_{i=0}^{p-1}C_{n\%p}^i*(C_{n/p}^0+C_{n/p}^1+...C_{n/p}^{k/p-1})
\]

那这个东西岂不是可以写成

\[f(n\%p,p-1)*f(n/p,k/p-1)
\]

在加上那个不完整的块

\(\sum_{i=0}^{k\%p}C_{n\%p}^i\)可以写成\(f(n\%p,k\%p)\)

于是就有

\[f(n,k)=f(n\%p,p-1)*f(n/p,k/p-1)+C_{n/p}^{k/p}*f(n\%p,k\%p)
\]

由于\(n\%p\)还有\(k\%p\)都小于\(2333\),所以\(f(n\%p,p-1)\)还有\(f(n\%p,k\%p)\)可以直接预处理好可以直接求出来

至于那个\(C_{n/p}^{k/p}\)就直接上\(Lucas\)好了

时间复杂度\(O(p^2+Tlog_{2333}^2n)\)

代码

非常sb的把\(C_0^0\)当成\(0\)WA了好几发

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define maxn 2335
const int P=2333;
LL c[maxn+2][maxn+2];
LL f[maxn+2][maxn+2];
inline LL Lucas(LL n,LL m)
{
if(!m) return 1;
if(n==m) return 1;
if(n<m) return 0;
return c[n%P][m%P]*Lucas(n/P,m/P)%P;
}
inline LL F(LL n,LL k)
{
if(k<0) return 0;
if(!n) return 1;
if(!k) return 1;
if(n<P&&k<P) return f[n][k];
return (F(n/P,k/P-1)*f[n%P][P-1]%P+Lucas(n/P,k/P)*f[n%P][k%P]%P)%P;
}
int main()
{
int T;
scanf("%d",&T);
c[0][0]=1;
for(re int i=1;i<=maxn;i++)
c[i][i]=c[i][0]=1;
for(re int i=1;i<=maxn;i++)
for(re int j=1;j<i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
f[0][0]=1;
for(re int i=1;i<=maxn;i++)
f[i][0]=1;
for(re int i=0;i<=maxn;i++)
for(re int j=1;j<=maxn;j++)
f[i][j]=(c[i][j]+f[i][j-1])%P;
LL n,k;
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%lld\n",F(n,k));
}
return 0;
}

【[SHOI2015]超能粒子炮·改】的更多相关文章

  1. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  2. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  3. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  4. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  5. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  6. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  7. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  8. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  9. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  10. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

随机推荐

  1. Firebird Fluentdata

    Fluentdata 支持很多种数据库驱动,但对Firebird不友好,不过可以使用DB2Provider来操作大部分功能, 例如: new DbContext().ConnectionString( ...

  2. 原创经验:微信小程序开发总结

    学习时间不短了.今天公司不加班总结一下我的开发经验吧,以下都是我认为很重要的总结哦!写下来让我自己也记得更清楚,同时希望可以帮助到有需要的同学哦 一: 参数传值的方法 1:  data-id我们可以给 ...

  3. js扩展

    http://www.css88.com/doc/underscore/#findWhere

  4. T-SQL 备份和还原数据库

    --完整备份  Backup   Database   db_database  To disk='D:\Backup\db_database_Full.bak'   --差异备份  Backup   ...

  5. 流畅的python和cookbook学习笔记(七)

    1.读写压缩数据文件 使用 gzip 和 bz2 模块来读写压缩文件,不过需要注意文件的模式,默认格式为二进制. # 读取压缩文件 import gzip with gzip.open('somefi ...

  6. 前端定位Position属性四个值

    1.static(静态定位):默认值.没有定位,元素出现在正常的流中. 2.relative(相对定位):生成相对定位的元素,通过top,bottom,left,right的设置相对于其正常(原先本身 ...

  7. IDEA创建Maven项目和子模块

    一.新建Project a. 新建项目,点击Create New Project b. 选择使用maven来新建项目 选择新建Maven模块(对IDEA来说是项目) 如果Project SDK那里没有 ...

  8. unable to retrieve metadata

    在使用Scaffolding模板生成的时候,抛出了这个一个错误unable to retrieve metadata找了一下bug,居然是因为自己的数据库连接字符串,把它注释后,就可以运行了,我推测, ...

  9. Python OOP面向对象

    一.什么是面向对象的程序设计 1.面向过程 程序设计:核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种机械式的思维方式. 优点是 ...

  10. 如何对MySQL数据库中的数据进行实时同步