%matplotlib inline
from mxnet import nd
import numpy as np
from mxnet import autograd,gluon,init,nd
from mxnet.gluon import nn,data as gdata,loss as gloss
import time def get_data():
data = np.genfromtxt('./data/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
return nd.array(data[:1500, :-1]), nd.array(data[:1500, -1]) features, labels = get_data()
features[0]
labels[0] # 定义网络
def linreg(X,w,b):
return nd.dot(X,w) + b # 平方损失
def squared_loss(y_hat,y):
return (y_hat - y.reshape(y_hat.shape))**2/2 # 初始化参数
def init_momentum_states():
v_w = nd.zeros((features.shape[1], 1))
v_b = nd.zeros(1)
return (v_w, v_b) # params [w,b]
# states [v_w,v_b] 初始化状态
# hyperparams {'lr':0.02,'momentum':0.5}
def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
v[:] = hyperparams['momentum'] * v + hyperparams['lr'] * p.grad
p[:] -= v def train(trainer_fn, states, hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型。
net, loss = gb.linreg, gb.squared_loss
w = nd.random.normal(scale=0.01, shape=(features.shape[1], 1))
b = nd.zeros(1)
w.attach_grad()
b.attach_grad() def eval_loss():
return loss(net(features, w, b), labels).mean().asscalar() ls = [eval_loss()]
data_iter = gdata.DataLoader(
gdata.ArrayDataset(features, labels), batch_size, shuffle=True)
for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
with autograd.record():
l = loss(net(X, w, b), y).mean() # 使用平均损失。
l.backward()
trainer_fn([w, b], states, hyperparams) # 迭代模型参数。
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss()) # 每 100 个样本记录下当前训练误差。
# 打印结果和作图。
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
gb.set_figsize()
gb.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
gb.plt.xlabel('epoch')
gb.plt.ylabel('loss') train(trainer_fn=sgd_momentum,states= init_momentum_states(),hyperparams={'lr': 0.02, 'momentum': 0.5}, features=features, labels=labels) train(sgd_momentum,init_momentum_states(),{'lr':0.02,'momentum':0.9},features,labels) train(sgd_momentum,init_momentum_states(),{'lr':0.004,'momentum':0.9},features,labels)

gluon 版:

def train_gluon(trainer_name,trainer_hyperparams,features,labels,batch_size=10,num_epochs=2):
# 初始化模型
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
loss = gloss.L2Loss() def eval_loss():
return loss(net(features),labels).mean().asscalar() ls = [eval_loss()]
data_iter = gdata.DataLoader(gdata.ArrayDataset(features,labels),batch_size,shuffle=True) # 创建 Trainer 实例迭代模型参数
trainer = gluon.Trainer(net.collect_params(),trainer_name,trainer_hyperparams) for _ in range(num_epochs):
start = time.time()
for batch_i, (X,y) in enumerate(data_iter):
with autograd.record():
l = loss(net(X),y)
l.backward()
trainer.step(batch_size)
if (batch_i + 1) * batch_size % 100 ==0:
ls.append(eval_loss()) # 打印结果和作图。
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
gb.set_figsize()
gb.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
gb.plt.xlabel('epoch')
gb.plt.ylabel('loss') train_gluon('sgd',{'learning_rate':0.004,'momentum':0.9},features,labels)

动量法应用NASA测试不同飞机机翼噪音的更多相关文章

  1. NLP之基于Seq2Seq和注意力机制的句子翻译

    Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 ...

  2. NLP之基于Bi-LSTM和注意力机制的文本情感分类

    Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi ...

  3. 基于Seq2Seq和注意力机制的句子翻译

    Seq2Seq(Attention) 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 A ...

  4. NLP之基于Seq2Seq的单词翻译

    Seq2Seq 目录 Seq2Seq 1.理论 1.1 基本概念 1.2 模型结构 1.2.1 Encoder 1.2.2 Decoder 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模 ...

  5. NLP之Bi-LSTM(在长句中预测下一个单词)

    Bi-LSTM @ 目录 Bi-LSTM 1.理论 1.1 基本模型 1.2 Bi-LSTM的特点 2.实验 2.1 实验步骤 2.2 实验模型 1.理论 1.1 基本模型 Bi-LSTM模型分为2个 ...

  6. NLP之TextLSTM(预测单词下一个字母)

    LSTM 目录 LSTM 1.理论 1.1 LSTM与RNN 1.1.1 RNN的缺点 1.1.2 LSTM 1.2 LSTM基本结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 ...

  7. NLP之TextRNN(预测下一个单词)

    TextRNN @ 目录 TextRNN 1.基本概念 1.1 RNN和CNN的区别 1.2 RNN的几种结构 1.3 多对多的RNN 1.4 RNN的多对多结构 1.5 RNN的多对一结构 1.6 ...

  8. NLP之基于TextCNN的文本情感分类

    TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在 ...

  9. 用javascript写星际飞机大战游戏

    在github里看到了个不错的脚本游戏,决定亲自动手来写,效果如下 下面是代码的思路分享 把整个代码理解消化确实不容易,但是如果你坚持看完相信你一定会有收获 如果没兴趣可以直接点击下面的链接 复制代码 ...

随机推荐

  1. SSRS 通过Customer Code访问Dataset

    A dataset in Reporting Services is not the same type of object as an ADO.Net dataset.  A report data ...

  2. 第2天:JavaScript基础(运算符、案例、循环、冒泡以及prompt提示输入框)

    一元运算在前在后的区别 加加 var num1 = 10; //++在后面 先参与运算 再自加1 var sum1 = num1++ +10; console.log("sum1的值:&qu ...

  3. axios发送post请求后台接受不到问题

    axios发送post请求后台接受不到问题 1.首先这是前端的问题 2.解决方案不唯一,但这招肯定行 <!DOCTYPE html> <html> <head> & ...

  4. webservice log4net日志写入失败

    原因1:如果webservice和调用者都部署在一台机器上,日志有可能写到了项目所在目录中,虽然你添加的服务引用是部署在iis下的,但不会写到这.暂时解决办法,把webservice部署到内网服务器上 ...

  5. DataGridView初始化,加载数据

    1,创建winform窗体应用程序 2,在界面上拖入DataGridView控件 3,添加相应的列如图: 4,开始编写后面的代码: private DataTable CountryDt = new ...

  6. MyBaits_查询缓存02_Ehcache二级缓存

    一.Ehcache二级缓存的开启 导入jar(https://github.com/mybatis/ehcache-cache/releases) <cache type="org.m ...

  7. UVA 10328(DP,大数,至少连续)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19825 这道题和http://www.cnblogs.com/qlky/p/ ...

  8. ugui之圆角矩形头像实现

    这个是参考大神的修改了一下渲染方式实现的,可以去查看原帖的,原贴是圆形头像,原理讲的非常详细 点击这里 我写的这个只支持正方形图片,效果是酱紫的~ 一共三个代码,还需要两个代码,原帖里都有的,我只是修 ...

  9. PAT 1033. To Fill or Not to Fill

    #include <cstdio> #include <cstdlib> #include <vector> #include <algorithm> ...

  10. webpack基本使用教程

    安装 本地安装 npm install --save-dev webpack npm install --save-dev webpack-cli //4.x以上版本,用于cli命令 全局安装 npm ...