# -*- coding: utf-8 -*-

import tensorflow as tf
w1=tf.Variable(tf.random_normal([2,6],stddev=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1))

x=tf.placeholder(dtype=tf.float32,shape=(4,2),name="input")
h=tf.matmul(x,w1)
y=tf.matmul(h,w2)

init_op=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init_op)

print sess.run(y,feed_dict={x:[[5.2,2.9],[3.9,1.1],[3.9,5.2],[6.1,9.2]]})

数据需要通过字典输入

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the variable initializer.
    sess.run(w.initializer)
    # ...you now can run ops that use the value of 'w'...

#global_variables_initializer()to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.Add an Op to initialize global variables.
init_op = tf.global_variables_initializer()

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the Op that initializes global variables.
    sess.run(init_op)
    # ...you can now run any Op that uses variable values...

tf.Variable

_init__(
    initial_value=None,
    trainable=True,
    collections=None,
    validate_shape=True,
    caching_device=None,
    name=None,
    variable_def=None,
    dtype=None,
    expected_shape=None,
    import_scope=None
)

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections, which defaults to [GraphKeys.GLOBAL_VARIABLES].

If trainable is True the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the variable to its initial value.

Args:

  • initial_value: A Tensor, or Python object convertible to a Tensor, which is the initial value for the Variable. The initial value must have a shape specified unless validate_shape is set to False. Can also be a callable with no argument that returns the initial value when called. In that case, dtype must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)
  • trainable: If True, the default, also adds the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as the default list of variables to use by the Optimizer classes.
  • collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.GLOBAL_VARIABLES].
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • caching_device: Optional device string describing where the Variable should be cached for reading. Defaults to the Variable's device. If not None, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through Switch and other conditional statements.
  • name: Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
  • variable_defVariableDef protocol buffer. If not None, recreates the Variable object with its contents, referencing the variable's nodes in the graph, which must already exist. The graph is not changed.variable_def and the other arguments are mutually exclusive.
  • dtype: If set, initial_value will be converted to the given type. If None, either the datatype will be kept (if initial_value is a Tensor), or convert_to_tensor will decide.
  • expected_shape: A TensorShape. If set, initial_value is expected to have this shape.
  • import_scope: Optional string. Name scope to add to the Variable. Only used when initializing from protocol buffer.

Raises:

  • ValueError: If both variable_def and initial_value are specified.
  • ValueError: If the initial value is not specified, or does not have a shape and validate_shape is True.

tf随笔-5的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-8

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...

  6. TF随笔-7

    求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...

  7. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  8. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

  9. TF随笔-3

    >>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...

随机推荐

  1. Swap 2 Variables in Python

    In Python, it's concise, easy and faster to swap 2 variables compared in other Programming languages ...

  2. python数据可视化、数据挖掘、机器学习、深度学习 常用库、IDE等

    一.可视化方法 条形图 饼图 箱线图(箱型图) 气泡图 直方图 核密度估计(KDE)图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二.交互式工具 Ipython.Ipython not ...

  3. Android位置权限以及数组寻找索引的坑

    填坑与求解惑来的. 一.Android 危险权限,来自官方文档的坑??? Android开发者都知道,Android 6.0 之前,权限申请只需要在 AndroidManifest.xml 文件中声明 ...

  4. struts2基础——需要注意的几点

    struts是流行和成熟的基于MVC设计模式的web应用程序框架,使用struts可以帮助我们减少运用MVC设计模型来开发web应用的时间. 目录: 一.struts2的工作原理及文件结构 二.三种访 ...

  5. CodeForces - 786B Legacy (线段树+DIjkstra+思维)

    题意:给N个点和Q条选项,有三种类型的选项:1.从u到v花费w修建一条路:2.从u到下标区间为[L,R]的点花费w修建一条路; 3.从下标区间为[L,R]的点到u花费w修建一条路. 然后求起点s到其余 ...

  6. SqlHelper简单实现(通过Expression和反射)1.引言

    之前老大说要改变代码中充斥着各种Select的Sql语句字符串的情况,让我尝试着做一个简单的SqlHelper,要具有以下功能: 1.不要在业务代码中暴露DataTable或者DataSet类型: 2 ...

  7. 20162326 《Java程序设计》第3周学习总结

    20162326 <Java程序设计>第3周学习总结 教材学习内容总结 这周我通过课堂学习了VIM的列编辑crtl+v,shift+i shift+a·分别是左侧插入和右侧插入.还学习了使 ...

  8. IntelliJ IDEA 2017 创建SpringBoot项目, 及.jar没有主清单属性解决办法

    1. 创建项目:  File >> New >> Spring Initializr  选好 SDK, 及 依赖包(比如 Web >> Web ) .   需要使用 ...

  9. SpringBoot2.0整合Sharding-Jdbc

    maven: <parent> <groupId>org.springframework.boot</groupId> <artifactId>spri ...

  10. Steema TeeChart Pro VCL FMX 2017.20 Full Suorce在Delphi XE10下的安装

    一.首先将压缩包TeeChart Pro VCL FMX 2017.20 FS.rar解压到一个目录,比如 E:\Application\Steema TeeChart Pro VCL FMX 201 ...