# -*- coding: utf-8 -*-

import tensorflow as tf
w1=tf.Variable(tf.random_normal([2,6],stddev=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1))

x=tf.placeholder(dtype=tf.float32,shape=(4,2),name="input")
h=tf.matmul(x,w1)
y=tf.matmul(h,w2)

init_op=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init_op)

print sess.run(y,feed_dict={x:[[5.2,2.9],[3.9,1.1],[3.9,5.2],[6.1,9.2]]})

数据需要通过字典输入

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the variable initializer.
    sess.run(w.initializer)
    # ...you now can run ops that use the value of 'w'...

#global_variables_initializer()to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.Add an Op to initialize global variables.
init_op = tf.global_variables_initializer()

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the Op that initializes global variables.
    sess.run(init_op)
    # ...you can now run any Op that uses variable values...

tf.Variable

_init__(
    initial_value=None,
    trainable=True,
    collections=None,
    validate_shape=True,
    caching_device=None,
    name=None,
    variable_def=None,
    dtype=None,
    expected_shape=None,
    import_scope=None
)

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections, which defaults to [GraphKeys.GLOBAL_VARIABLES].

If trainable is True the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the variable to its initial value.

Args:

  • initial_value: A Tensor, or Python object convertible to a Tensor, which is the initial value for the Variable. The initial value must have a shape specified unless validate_shape is set to False. Can also be a callable with no argument that returns the initial value when called. In that case, dtype must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)
  • trainable: If True, the default, also adds the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as the default list of variables to use by the Optimizer classes.
  • collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.GLOBAL_VARIABLES].
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • caching_device: Optional device string describing where the Variable should be cached for reading. Defaults to the Variable's device. If not None, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through Switch and other conditional statements.
  • name: Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
  • variable_defVariableDef protocol buffer. If not None, recreates the Variable object with its contents, referencing the variable's nodes in the graph, which must already exist. The graph is not changed.variable_def and the other arguments are mutually exclusive.
  • dtype: If set, initial_value will be converted to the given type. If None, either the datatype will be kept (if initial_value is a Tensor), or convert_to_tensor will decide.
  • expected_shape: A TensorShape. If set, initial_value is expected to have this shape.
  • import_scope: Optional string. Name scope to add to the Variable. Only used when initializing from protocol buffer.

Raises:

  • ValueError: If both variable_def and initial_value are specified.
  • ValueError: If the initial value is not specified, or does not have a shape and validate_shape is True.

tf随笔-5的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-8

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...

  6. TF随笔-7

    求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...

  7. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  8. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

  9. TF随笔-3

    >>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...

随机推荐

  1. Bootstrap 简介二

    什么是 Bootstrap? Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的. 历史 Bootstra ...

  2. 转:.Net 中的反射(反射特性) - Part.3

    .Net 中的反射(反射特性) - Part.3 反射特性(Attribute) 可能很多人还不了解特性,所以我们先了解一下什么是特性.想想看如果有一个消息系统,它存在这样一个方法,用来将一则短消息发 ...

  3. redis 笔记04 服务器、复制

    服务器 1. 一个命令请求从发送到完成主要包括以下步骤: 1). 客户端将命令请求发送给服务器 2). 服务器读取命令请求,并分析出命令参数 3). 命令执行器根据参数查找命令的实现函数,然后执行实现 ...

  4. redis 系列文章推荐

    推荐博客: Redis在linux上的安装: http://www.open-open.com/lib/view/open1426468117367.html Redis的三种启动方式: http:/ ...

  5. Apache 域名跳转配置

    域名跳转 就是实现URL的跳转和隐藏真实地址,基于Perl语言的正则表达式规范.平时帮助我们实现拟静态,拟目录,域名跳转,防止盗链等 .   参数格式 参数: Apache mod_rewrite 规 ...

  6. PHP memcache扩展模块安装

    安装php扩展模块memcache memcache 的工作就是在专门的机器的内存里维护一张巨大的hash表,来存储经常被读写的一些数组与文件,从而极大的提高网站的运行效率,减轻后端数据库的读写压力. ...

  7. SpringBoot服务器压测对比(jetty、tomcat、undertow)

    1.本次对比基础环境信息如下: springboot版本1.5.10 centos虚机4c6G,版本7.4 centos实机2u16c40G,版本7.4,虚机运行在实机上 ab版本2.3 jprofi ...

  8. Linux下Mysql的安装步骤

    (1).下载安装包 https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.23-linux-glibc2.12-x86_64.tar [roo ...

  9. Python-GUI编程-PyQt5

    Python-GUI编程-PyQt5 1. GUI编程是什么? GUI 全称为: Graphical User Interface;简称GUI翻译为中文为: 图形化用户接口简单理解就是:- 使用Pyt ...

  10. IntelliJ Idea 常用功能及其快捷键总结(长期更新,纯手动)

    基础功能总结 快捷键总结 全局搜索 CTRL SHIF F 局部搜索 CTRL F 替换 CTRL R 复制一行 CTRL D 剪切一行 CTRL X 行定位 CTRL G 文件重命名 SHIFT F ...