题目大意

给出\(n(n\leq 18)\)个点的无向连通图,\(m(m\leq 10^5)\)次询问。每次询问给出一个点集和一个起点\(s\),询问从\(s\)出发,经过这个点集中的每一个点至少一次的期望步数。

题目分析

经过这个点集每一个点至少一次的期望步数,就是到达点集最后一个点的期望步数。这个直接算貌似不好求,考虑min-max容斥。

对于每一个起点,\(\max(S)=\sum\limits_{T \subseteq S}(-1)^{|T|-1}\min(T)\)

\(\max(S)\)表示到达点集\(S\)中的最后一个点的期望步数。

\(\min(S)\)表示到达点集\(S\)中的最初一个点的期望步数。

怎么求\(\min(T)\)呢?

枚举集合\(T\),设其补集为\(C\),设对于点\(x\)的\(\min(T)\)为\(f_x\)。

对于\(T\)中的点\(x\),显然\(f_x=0\)

对于\(C\)中的点\(x\),\(f_x=\frac{1}{d_x}\sum\limits_{(x,y)\in E}f_y+1\)

那么就可以高斯消元了。

如何快速计算\(\max(S)\)呢?

FWT\(O(n* 2^n)\)计算子集贡献已经是常规操作了。

洛谷 P4321 【随机漫游】的更多相关文章

  1. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  2. luogu P4321 随机漫游 期望dp 二进制 高斯消元

    LINK:随机漫游 非常妙的一道题. 容易想到倒推期望. 设状态 f[i][j]表示到达第i个点 此时已经到达的集合为j能走到全集的期望边数. 只要求出来这个就能O(1)回答询问. \(f[i][j] ...

  3. Luogu P4321 随机漫游

    期望DP要倒着推 Luogu P4321 题意 LOJ #2542 不一定是树,询问点不一定均为1 $Solution$ 设计一个巧妙的DP状态 设$ F(S,x)$表示当前在点$ x$已经走遍了$ ...

  4. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  5. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  6. 洛谷P2756飞行员配对方案问题 P2055假期的宿舍【二分图匹配】题解+代码

    洛谷 P2756飞行员配对方案问题 P2055假期的宿舍[二分图匹配] 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架 ...

  7. 洛谷U19464 山村游历(Wander)(LCT,Splay)

    洛谷题目传送门 LCT维护子树信息常见套路详见我的总结 闲话 题目摘自WC模拟试题(by Philipsweng),原题目名Wander,"山村游历"是自己搞出来的中文名. 数据自 ...

  8. 洛谷P2179 骑行川藏

    什么毒瘤... 解:n = 1的,发现就是一个二次函数,解出来一个v的取值范围,选最大的即可. n = 2的,猜测可以三分.于是先二分给第一段路多少能量,然后用上面的方法求第二段路的最短时间.注意剩余 ...

  9. 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...

随机推荐

  1. Firebird 日期时间

    查询当前时间: 1.使用内置系统变量 select current_timestamp from rdb$database 2.使用now字符串转换 select cast('NOW' as time ...

  2. Expression Blend实例中文教程(13) - 控件模板快速入门ControlTemplates

    上篇,介绍了控件样式(Style)和模板(Template)的基础概念,并且演示了使用Blend设计控件样式.本篇将继续介绍使用Blend设计自定义控件模板 - ControlTemplate.Con ...

  3. Tidb 离线Ansible方式部署实践

    1.最近浏览到一个比较新的分布式数据库Tidb,开源看起来比较牛的样子,一时手痒就动手试试部署 2.参考官方 Ansible 离线方式部署 :https://pingcap.com/docs-cn/o ...

  4. requset获取post提交的请求参数

    1.请求体的内容通常是通过post来提交的,格式是 username=zhansan&password=123&hobby=football||&hobby=basketbal ...

  5. Redis 常见命令

    0. 5种数据类型 String(字符串) List(列表) Hash(字典) Set(集合) Sorted Set(有序集合) 1. String 字符串 set key value 设置key=v ...

  6. 给div加上padding和border,如何不让div整体改变

    最近要入门H5,遇到很多困惑,所以,每解决一个,我就要写在博客里,以防忘记! 给div加上padding和border,如何不让div整体改变? 如果想要实现这样的效果,只需要在这个div块中写入 b ...

  7. FLASK日志记录

    from flask import Flask from flask_restful import Resource, Api import logging app = Flask(__name__) ...

  8. c# json数组动态字段名

    根据给定的列名动态生成json数组 List<string> cols = new List<string>() { "姓名","性别" ...

  9. (转)快速了解微信小程序的使用,一个根据小程序的框架开发的todos app

    微信官方已经开放微信小程序的官方文档和开发者工具.前两天都是在看相关的新闻来了解小程序该如何开发,这两天官方的文档出来之后,赶紧翻看了几眼,重点了解了一下文档中框架与组件这两个部分,然后根据简易教程, ...

  10. filter() 方法创建一个新数组

    filter快速过滤创建一个新数组 var new_array = arr.filter(callback(element[, index[, array]])[, thisArg]) 参数节 cal ...