这题可以用回文自动机来做,但是我并没有学,于是用Manacher+SA的做法O(nlogn)水过

首先,看到回文串就能想到用Manacher

同样还是要利用Manacher能不重复不遗漏地枚举每个回文子串的性质

只是不重复不遗漏还不够,我们还要统计出现次数

每个子串一定是一个后缀的前缀,于是可以用后缀数组

用后缀数组求出height数组之后,对于在Manacher过程中枚举到的每个长度为k的回文串,可以在height数组中二分,用O(logn)的时间求出这个子串的出现次数

BZOJ和COGS上有评论说Manacher + SA的方式被卡了,也有人说自己跑了19s,我这个实现是在BZOJ上跑了10s,COGS的76组数据总共跑了3.7s。

代码如下:

 #include <cstring>
#include <algorithm>
#include <cstdio>
#include <cctype> using namespace std;
typedef long long ll;
const int MAXN = , LOGN = ; int n;
char str[MAXN];
int sas[MAXN], san;
int mas[MAXN<<], man; namespace SA {
int sa[MAXN], rk[MAXN], ht[MAXN];
int tmp1[MAXN], tmp2[MAXN], cnt[MAXN];
int minv[MAXN][LOGN], logn[MAXN];
void solve( int m ) {
int *x = tmp1, *y = tmp2;
for( int i = ; i < m; ++i ) cnt[i] = ;
for( int i = ; i < san; ++i ) ++cnt[ x[i] = sas[i] ];
for( int i = ; i < m; ++i ) cnt[i] += cnt[i-];
for( int i = san-; i >= ; --i ) sa[--cnt[x[i]]] = i;
for( int k = ; k <= san; k <<= ) {
int p = ;
for( int i = san-k; i < san; ++i ) y[p++] = i;
for( int i = ; i < san; ++i ) if( sa[i] >= k ) y[p++] = sa[i]-k;
for( int i = ; i < m; ++i ) cnt[i] = ;
for( int i = ; i < san; ++i ) ++cnt[x[i]];
for( int i = ; i < m; ++i ) cnt[i] += cnt[i-];
for( int i = san-; i >= ; --i ) sa[--cnt[x[y[i]]]] = y[i];
swap(x,y), x[sa[]] = , p = ;
for( int i = ; i < san; ++i )
x[sa[i]] = y[sa[i]] == y[sa[i-]] && y[sa[i]+k] == y[sa[i-]+k] ? p- : p++;
if( p == san ) break;
m = p;
}
for( int i = ; i < san; ++i ) rk[i] = x[i];
int k = ;
for( int i = ; i < san; ++i ) {
if( k ) --k;
if( !rk[i] ) continue;
int j = sa[rk[i]-];
while( sas[i+k] == sas[j+k] ) ++k;
ht[rk[i]] = minv[rk[i]][] = k;
}
for( int k = ; (<<k) <= san; ++k )
for( int i = ; i+(<<k) <= san; ++i )
minv[i][k] = min( minv[i][k-], minv[i+(<<(k-))][k-] );
k = ;
for( int i = ; i <= san; ++i ) {
if( (<<(k+)) <= i ) ++k;
logn[i] = k;
}
}
int qmin( int l, int r ) {
int k = logn[r-l+];
return min( minv[l][k], minv[r+-(<<k)][k] );
}
} void input() {
scanf( "%s", str ), n = strlen(str);
man = ;
for( int i = ; i < n; ++i ) {
sas[i] = str[i];
mas[man++] = '#', mas[man++] = str[i];
}
sas[n] = , san = n+;
mas[man++] = '#';
SA::solve();
} ll ans = ;
int rd[MAXN<<];
void update( int p, int k ) {
using namespace SA;
p = rk[p];
int LL = , LR = p;
while( LL < LR ) {
int mid = (LL+LR)>>;
if( qmin(mid+,p) >= k ) LR = mid;
else LL = mid+;
}
int RL = p, RR = san-;
while( RL < RR ) {
int mid = (RL+RR+)>>;
if( qmin(p+,mid) >= k ) RL = mid;
else RR = mid-;
}
ans = max( ans, ll(k)*(RL-LL+) );
}
int cnt[] = {};
void manacher() {
int mx = , p = ;
for( int i = ; i < man; ++i ) {
if( i < mx ) rd[i] = min( rd[*p-i], mx-i );
else rd[i] = ;
while( i+rd[i] < man && i-rd[i] >= && mas[i+rd[i]] == mas[i-rd[i]] ) {
if( islower( mas[i-rd[i]] ) ) update( (i-rd[i])/, rd[i]+ );
++rd[i];
}
if( i+rd[i] > mx ) mx = i+rd[i], p = i;
}
for( int i = ; i < n; ++i )
ans = max( ans, (ll)++cnt[str[i]-'a'] );
printf( "%lld\n", ans );
} int main() {
// freopen( "apio2014_palindrome.in", "r", stdin );
// freopen( "apio2014_palindrome.out", "w", stdout );
input(), manacher();
return ;
}

【题解】回文串 APIO 2014 BZOJ 3676 COGS 1985 Manacher+后缀数组+二分的更多相关文章

  1. BZOJ 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)

    题目大意:求可重叠的相同子串数量至少是K的子串最长长度 洛谷传送门 依然是后缀数组+二分,先用后缀数组处理出height 每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个 ...

  2. BZOJ 3230: 相似子串( RMQ + 后缀数组 + 二分 )

    二分查找求出k大串, 然后正反做后缀数组, RMQ求LCP, 时间复杂度O(NlogN+logN) -------------------------------------------------- ...

  3. BZOJ 3676 【APIO2014】 回文串

    题目链接:回文串 我终于也会回文自动机辣! 其实吗……我觉得回文自动机(听说这玩意儿叫\(PAM\))还是比较\(simple\)的……至少比\(SAM\)友善多了…… 所谓回文自动机,每个节点就代表 ...

  4. bzoj 2565: 最长双回文串 回文自动机

    题目: Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"cba",不相同 ...

  5. BZOJ2565:最长双回文串——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2565 题目大意: 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(ab ...

  6. P3649 [APIO2014]回文串(回文树)

    题目描述 给你一个由小写拉丁字母组成的字符串 ss .我们定义 ss 的一个子串的存在值为这个子串在 ss 中出现的次数乘以这个子串的长度. 对于给你的这个字符串 ss ,求所有回文子串中的最大存在值 ...

  7. POJ 3974 回文串-Manacher

    题目链接:http://poj.org/problem?id=3974 题意:求出给定字符串的最长回文串长度. 思路:裸的Manacher模板题. #include<iostream> # ...

  8. manacher算法,求回文串

    用来求字符串最长回文串或者回文串的总数量 #include<map> #include<queue> #include<stack> #include<cma ...

  9. 牛客寒假算法基础集训营4 I Applese 的回文串

    链接:https://ac.nowcoder.com/acm/contest/330/I来源:牛客网 自从 Applese 学会了字符串之后,精通各种字符串算法,比如……判断一个字符串是不是回文串. ...

随机推荐

  1. 373. Partition Array by Odd and Even【LintCode java】

    Description Partition an integers array into odd number first and even number second. Example Given  ...

  2. 孤荷凌寒自学python第七十九天开始写Python的第一个爬虫9并使用pydocx模块将结果写入word文档

    孤荷凌寒自学python第七十九天开始写Python的第一个爬虫9 (完整学习过程屏幕记录视频地址在文末) 今天在上一天的基础上继续完成对我的第一个代码程序的书写. 到今天终于完成了对docx模块针对 ...

  3. Machine Learning笔记整理 ------ (四)线性模型

    1. 线性模型 基本形式:给定由d个属性描述的样本 x = (x1; x2; ......; xd),其中,xi是x在第i个属性上的取值,则有: f(x) = w1x1 + w2x2 + ...... ...

  4. Ext JS 6学习文档-第4章-数据包

    Ext JS 6学习文档-第4章-数据包 数据包 本章探索 Ext JS 中处理数据可用的工具以及服务器和客户端之间的通信.在本章结束时将写一个调用 RESTful 服务的例子.下面是本章的内容: 模 ...

  5. BZOJ 4736 温暖会指引我们前行 LCT+最优生成树+并查集

    题目链接:http://uoj.ac/problem/274 题意概述: 没什么好概述的......概述了题意就知道怎么做了......我懒嘛 分析: 就是用lct维护最大生成树. 然后如果去UOJ上 ...

  6. how to install pygraphviz on windows 10 with python 3.6

    Here's what worked for me: Win 7 AMD64 Install MSFT C++ compiler. Install Anaconda for Win AMD64, Py ...

  7. OpenGL ES 2.0 -- 制作 3D 彩色旋转三角形 - 顶点着色器 片元着色器 使用详解

    最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 . 案例下载地址 : http://download.csdn.net/detail/han120201 ...

  8. object-oriented第二次作业(1)

    1001.A+B F Format(20) 我的代码 题目看完,感觉挺简单的,就直接开始写代码了. 我把加起来后的数字的每位数用数组存起来,特判一下0和负数的情况,然后再一位位输出,遇到该输逗号的时候 ...

  9. OSG配置失败解决方案

    这连续三天都在台式机上配置OSG,总是报各种各样的错. 后来换到笔记本上配置,结果一次性就配置成功了.笔记本和台式机都是WIN10系统,都是VS2013.或许有时候出错就可以换台电脑或者重装系统试试. ...

  10. Swoole和Swoft的那些事 (Http/Rpc服务篇)

    https://www.jianshu.com/p/4c0f625d5e11 Swoft在PHPer圈中是一个门槛较高的Web框架,不仅仅由于框架本身带来了很多新概念和前沿的设计,还在于Swoft是一 ...