洛谷 P3232 [HNOI2013]游走
链接:
题意:
和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望。
分析:
要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有
\]
高斯消元即可。那么一条边 \((u,v)\) 的贡献就是 \((\dfrac{f_u}{d_u}+\dfrac{f_v}{d_v})*i\)。
考虑算出每条边的 \((\dfrac{f_u}{d_u}+\dfrac{f_v}{d_v})\),记为 \(w_i\),然后有一个容易猜的贪心结论是将 \(w_i\) 从小到大排序,然后逐个乘上 \(m-i+1\),也就是正序乘倒序时,答案最小。
算法:
利用$$f1=\sum\dfrac{f_v}{d_v}+1,f_u=\sum\dfrac{f_v}{d_v},f_n=0$$,高斯消元算出每个点的期望出发次数,然后转化为边的期望经过次数,最后再排序。时间复杂度 \(O(n^3+m\log m)\)
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=505;
const int M=125005;
int n;
struct matrix{
int x,y;
double a[N][N];
}A,B;
matrix operator*(const matrix &a,const matrix &b){
matrix c;
for(int i=1;i<=a.x;i++)
for(int j=1;j<=b.y;j++)
c.a[i][j]=0;
c.x=a.x,c.y=b.y;
for(int i=1;i<=a.x;i++)
for(int j=1;j<=b.y;j++)
for(int k=1;k<=a.y;k++)
c.a[i][j]+=a.a[i][k]*b.a[k][j];
return c;
}
matrix matinv(matrix &a){
matrix c;c.x=n,c.y=n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c.a[i][j]=(i==j);
for(int i=1;i<=n;i++){
int now=i;
for(int j=i+1;j<=n;j++)
if(fabs(a.a[j][i])>fabs(a.a[now][i]))now=j;
swap(a.a[i],a.a[now]);swap(c.a[i],c.a[now]);
double div=a.a[i][i];
for(int j=1;j<=n;j++)
a.a[i][j]/=div,c.a[i][j]/=div;
for(int j=1;j<=n;j++){
if(j==i)continue;
div=a.a[j][i];
for(int k=i;k<=n;k++)
a.a[j][k]-=div*a.a[i][k];
for(int k=1;k<=n;k++)
c.a[j][k]-=div*c.a[i][k];
}
}
return c;
}
int m,q;
int d[N];
int u[M],v[M];
double as[M];
signed main(){
n=in,m=in;
for(int i=1;i<=m;i++)
u[i]=in,v[i]=in,
d[u[i]]++,d[v[i]]++;
A.x=n,A.y=n;
for(int i=1;i<=m;i++)
A.a[u[i]][v[i]]=-1.0/d[v[i]],
A.a[v[i]][u[i]]=-1.0/d[u[i]];
for(int i=1;i<=n;i++)
A.a[n][i]=A.a[i][n]=0.0,A.a[i][i]=1.0;
int tmp=1;
B.a[1][1]=1.0;
B.x=n,B.y=tmp;
A=matinv(A);
B=A*B;
double ans=0;
for(int i=1;i<=m;i++)
as[i]=B.a[u[i]][1]/d[u[i]]+B.a[v[i]][1]/d[v[i]];
sort(as+1,as+1+m);
for(int i=1;i<=m;i++)
ans+=i*as[m-i+1];
printf("%.3lf",ans);
return 0;
}
题外话:
用上次的代码改了改就过了
洛谷 P3232 [HNOI2013]游走的更多相关文章
- 洛谷P3232[HNOI2013]游走
有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...
- [bzoj3143] [洛谷P3232] [HNOI2013] 游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- 题解 P3232 [HNOI2013]游走
洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...
- P3232 [HNOI2013]游走 解题报告
P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...
- P3232 [HNOI2013]游走——无向连通图&&高斯消元
题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- P3232 [HNOI2013]游走
吐槽 傻了傻了,对着题解改了好长时间最后发现是自己忘了调用高斯消元了... 思路 期望题,分配编号,显然编号大的分给贡献次数小的,所以需要知道每个边被经过次数的期望 然后边被经过的次数的期望就是连接的 ...
- BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
随机推荐
- 【PHP数据结构】队列的相关逻辑操作
在逻辑结构中,我们已经学习了一个非常经典的结构类型:栈.今天,我们就来学习另外一个也是非常经典的逻辑结构类型:队列.相信不少同学已经使用过 redis . rabbitmq 之类的缓存队列工具.其实, ...
- DEDE留言板调用导航的方法
DEDE留言板调用导航的方法 dede里的留言板guestbook.htm用{dede:include filename="../default/head.htm"/}不能自动生成 ...
- Jvm调优理论篇
Jvm实战调优 OOM(Out Of Memory) 内存溢出错误 ps:由于Java虚拟机有许多实现,本文主要阐述的是OpenJDK的HotSpot虚拟机,JDK版本是8. 一.首先要明白造成OOM ...
- VS 2019下载、安装与注册包含MF、界面美化和安装Visual Assist
下载: 1.在搜索框中输入"微软" 2. 3. 安装: 1.双击运行-继续-等待安装完成 2. 3.安装完后,重启电脑,并创建快捷方式. 注册: 1.打开软件 2. 3. 4.网上 ...
- P5782-[POI2001]和平委员会【2-SAT】
正题 题目链接:https://www.luogu.com.cn/problem/P5782 题目大意 \(n\)对人,每对之间恰好有一个人出席.\(m\)对仇恨关系表示两个人不能同时出席. 求是否有 ...
- MySQL数据库提权(一)
一.获取Mysql登录账号和密码 1.数据库提权需要知道数据库的账号密码.以及它的配置文件,一般配置文件都在网站的根目录下,这些配置文件命名有鲜明的特征,如:conn.config.data.sql. ...
- The Data Way Vol.2 | 做个『单纯』的程序员还真不简单
关于「The Data Way」 「The Data Way」是由 SphereEx 公司出品的一档播客节目.这里有开源.数据.技术的故事,同时我们关注开发者的工作日常,也讨论开发者的生活日常:我们聚 ...
- Tomcat各种日志的关系与catalina.out文件的分割
Tomcat 各日志之间的关系 一图胜千言! 其他日志如localhost.{yyyy-MM-dd}.log.localhost-access.{yyyy-MM-dd}.log是context的名称, ...
- Java初步学习——2021.10.09每日总结,第五周周六
(1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天学习了菜鸟教程实例部分 一.字符串 1.字符串比较--compareTo方法 public class Main { p ...
- 洛谷3628 APIO2010特别行动队(斜率优化)
考虑最普通的\(dp\) \[dp[i]=max(dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c \] qwq 由于演算纸扔掉了 qwq 所以直接给出最后的 ...