目录

Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.[J]. arXiv: Computer Vision and Pattern Recognition, 2018.

@article{samangouei2018defense-gan:,

title={Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.},

author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},

journal={arXiv: Computer Vision and Pattern Recognition},

year={2018}}

本文介绍了一种针对对抗样本的defense方法, 主要是利用GAN训练的生成器, 将样本\(x\)投影到干净数据集上\(\hat{x}\).

主要内容

我们知道, GAN的损失函数到达最优时, \(p_{data}=p_G\), 又倘若对抗样本的分布是脱离于\(p_{data}\)的, 则如果我们能将\(x\)投影到真实数据的分布\(p_{data}\)(如果最优也就是\(p_G\)), 则我们不就能找到一个防御方法了吗?

对于每一个样本, 首先初始化\(R\)个随机种子\(z_0^{(1)}, \ldots, z_0^{(R)}\), 对每一个种子, 利用梯度下降(\(L\)步)以求最小化

\[\tag{DGAN}
\min \quad \|G(z)-x\|_2^2,
\]

其中\(G(z)\)为利用训练样本训练的生成器.

得到\(R\)个点\(z_*^{(1)},\ldots, z_*^{(R)}\), 设使得(DGAN)最小的为\(z^*\), 以及\(\hat{x} = G(z^*)\), 则\(\hat{x}\)就是我们要的, 样本\(x\)在普通样本数据中的投影. 将\(\hat{x}\)喂入网络, 判断其类别.

另外, 作者还在实验中说明, 可以直接用\(\|G(z^*)-x\|_2^2 \frac{<}{>} \theta\) 来判断是否是对抗样本, 并计算AUC指标, 结果不错.

注: 这个方法, 利用梯度方法更新的难处在于, \(x \rightarrow \hat{x}\)这一过程, 包含了\(L\)步的内循环, 如果直接反向传梯度会造成梯度爆炸或者消失.

DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS的更多相关文章

  1. Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers

    目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...

  2. Defending Adversarial Attacks by Correcting logits

    目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets

    目录 概 主要内容 符号说明 Original Generator Transfer the Generator Wang X., He K., Guo C., Weinberger K., Hopc ...

  5. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  6. KDD 2019放榜!录取率仅14%,强调可重现性

    [导读]KDD 2019录取结果终于放榜了,今年Research和ADS两个 track共评审论文1900篇,其中Research track的录取率只有14%.今年也是KDD第一次采用双盲评审政策, ...

  7. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

  8. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  9. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

随机推荐

  1. 【STM8】STM8S介绍(编程环境、烧录、芯片内容)(Vcap需要一个电容接地)

    这篇博客的介绍大纲 [1]我使用的开发板和烧录器 [2]编程环境 [3]烧录软件和界面 [4]芯片内容 [1]我使用的开发板和烧录器 首先,我用的是STM8S003F3P6这款开发板,淘宝上就有了,5 ...

  2. Git配置文件与git config命令

    在Git配置文件中配置变量,可以控制Git的外观和操作的各个方面.通过git config命令可以获得和设置配置变量. 一.Git配置文件的位置 这些变量可以被存储在三个不同的位置: 1./etc/g ...

  3. Linux学习 - 文件系统常用命令

    一.文件系统查看命令df df [选项] [挂载点] -a 查看所有文件系统信息,包括特殊文件系统 -h 使用习惯单位显示容量 -T 显示文件系统类型 -m 以MB为单位显示容量 -k 以KB为单位显 ...

  4. Django REST framework完全入门

    Django REST framework 一个强大灵活的Django工具包,提供了便捷的 REST API 开发框架 我们用传统的django也可以实现REST风格的api,但是顶不住Django ...

  5. jdk1.7源码之-hashMap源码解析

    背景: 笔者最近这几天在思考,为什么要学习设计模式,学些设计模式无非是提高自己的开发技能,但是通过这一段时间来看,其实我也学习了一些设计模式,但是都是一些demo,没有具体的例子,学习起来不深刻,所以 ...

  6. UNCTF2020 pwn题目

    YLBNB 用pwntools直接连接,然后接受就行. 1 from pwn import * 2 3 p = remote('45.158.33.12',8000) 4 context.log_le ...

  7. MH/T4029.3 IFPL报文解析

    MH/T4029.3是民航业用来规定飞行计划相关数据交互的规范,今天我们先来解析下其中I类的IFPL报文. 我们先来看看IFPL报文长啥样. ZCZC -TITLE IFPL -FILTIM 0109 ...

  8. java对象与类

    1.设计一个用来描述汽车的类,使用类的非静态成员变量来表示汽车的车主姓名.当前的速率和当前方向盘的转向角度,使用类的非静态成员方法来表示改变汽车的速率和停车两个操作. 源代码: 1 package t ...

  9. CF658A Bear and Reverse Radewoosh 题解

    Content 一场比赛有 \(n\) 道题目,其中第 \(i\) 道题目的分值为 \(p_i\),需要花费的时间为 \(t_i\).需要说明的是,\(t_i\) 越大,这道题目的难度越大.在第 \( ...

  10. CF102B Sum of Digits 题解

    Content 给定一个数 \(n\),每次操作可以将 \(n\) 变成 \(n\) 各位数之和.问你几次操作之后可以将 \(n\) 变为一位数. 数据范围:\(1\leqslant n\leqsla ...