目录

Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. arXiv preprint arXiv 1606.03657, 2016.

既然都能生成图片了, 那至少得能够抓住数据的特征信息, 解耦.

主要内容

一些GAN的输入会包括\((z, c)\), 其中\(z\)是噪声, 而\(c\)是一些别的信息, 比如标签信息, 一个很自然的问题是, 怎么保证GAN会利用这部分信息呢? 换言之, 怎么保证生成器生成的图片\(G(z, c)\)与\(c\)有不可否认的关联呢?

衡量两个随机变量关联性的指标, 经典的便是互信息

\[I(X, Y) = H(X) - H(X|Y),
\]

在这个问题里就是

\[I(c,G(z,c)) = H(c) - H(c|G(z,c)).
\]

直接估计互信息是很困难的, 利用变分方法可以得到一个有效的下界(这也是VAE的灵魂):

\[\begin{array}{ll}
I(c,G(z,c)) & = \mathbb{E}_{x \sim P_G} \mathbb{E}_{P(c|x)} \log P(c|x) + H(c) \\
& = \mathbb{E}_{x \sim P_G} [\mathrm{KL}(P(c|x) \| Q(c|x)) + \mathbb{E}_{P(c|x)}\log Q(c|x)] + H(c) \\
& \ge \mathbb{E}_{x \sim P_G}\mathbb{E}_{P(c|x)}\log Q(c|x) + H(c)=: L_{I}(G, Q).
\end{array}
\]

其中\(Q\)是我们用来近似\(P(c|x)\)的. 上述还是存在一个问题, 即\(P(c|x)\)依然无法处理, 不过注意到

\[L_I(G, Q) = \mathbb{E}_{c \sim P(c), x \sim G(z, c)}[\log Q(c|x)] + H(c).
\]

我们可以给出一个合理的先验分布.

当\(c \in \mathcal{C}\)是离散的时候, 令\(Q\)的输出向量的长度为\(|\mathcal{C}|\), 可直接令该向量的softmax后的向量为概率向量;

当\(c\)是连续的时候, 倘若\(x=G(z, c^*)\), 则可以假设\(Q(c|x) \sim \mathcal{N}(c^*, \sigma^2 I)\), 此时

\[\log Q(c|x) \propto \log \exp(-\frac{\|c-c^*\|_2^2}{2\sigma^2}) \propto -\|c-c^*\|_2^2.
\]

最后的损失便为

\[\min_{G, Q} \max_D V_{\mathrm{InfoGAN}} (D, G, Q) = V(D, G) - \lambda \cdot L_I(G, Q).
\]

其中\(V(D, G)\)是普通的GAN的损失.

看一些InfoGAN的实现: \(z\)服从[0, 1]均匀分布, 类别标签服从均匀分布(\(1/K\)), 其他的用于描述角度宽度的\(c\)服从[-1, 1]的均匀分布.

实际上, 应该还是有一个超参数\(\sigma^2\)的, 但是当我们假设其与\(x\)无关的时候, 在损失部分其为一常数, 所以就不用管了(这和VAE在decoder部分的处理也是一致的).

估计是没弄好啊, 这没看出变化来.

InfoGAN的更多相关文章

  1. 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN

    ​GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...

  2. 深度学习-InfoGAN论文理解笔记

    在弄清楚InfoGAN之前,可以先理解一下变分推断目的以及在概率论中的应用与ELBO是什么,以及KL散度 https://blog.csdn.net/qy20115549/article/detail ...

  3. InfoGan笔记

    InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets ...

  4. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  5. 深度|OpenAI 首批研究成果聚焦无监督学习,生成模型如何高效的理解世界(附论文)

    本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BRO ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. [译]2016年深度学习的主要进展(译自:The Major Advancements in Deep Learning in 2016)

    译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/ ...

  8. 一些相关的github

    https://github.com/LTS4/DeepFool 貌似是说可以愚弄深度神经网络? https://github.com/tflearn/tflearn TF学习指南 http://gi ...

  9. (转)【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地

    [重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生 ...

随机推荐

  1. HBase【操作Java api】

    一.导入依赖 创建模块,导入以下依赖,maven默认编译版本是1.5,用1.8编译. pom.xml <dependencies> <dependency> <group ...

  2. [php安全]原生类的利用

    php原生类的利用 查看原生类中具有魔法函数的类 $classes = get_declared_classes(); foreach ($classes as $class) { $methods ...

  3. mysql index 8.0

    创建表 use vodb; drop table if exists test1; create table test1(id int NOT NULL AUTO_INCREMENT primary ...

  4. vue-cli 如何配置assetsPublicPath; vue.config.js如何更改assetsPublicPath配置;

    问题: vue项目完成打包上线的时候遇到静态资源找不到的问题,网上很多解决办法都是基于vue-cli 2.x 来解决的,但从vue-cli 3.0以后,便舍弃了配置文件夹(便没有了config这个文件 ...

  5. 【Linux】【Services】【Configuration】puppet

    1. 简介 1.1. 官方网站:https://docs.puppet.com/ 1.2. puppet是IT基础设施自动化管理工具,他的整个生命周期包括:provisioning,configura ...

  6. SpringColud微服务-微服务概述

    一.什么是微服务架构 微服务架构是一种架构模式,它提倡讲单一应用程序划分为一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.每个服务运行在单独的进程当中,服务与服务之间采用轻量级的通信机制 ...

  7. 【Java 与数据库】How to Timeout JDBC Queries

    How to Timeout JDBC Queries JDBC queries by default do not have any timeout, which means that a quer ...

  8. 1.RabbitMQ

    1.RabbitMq是什么?    MQ全称为Message Queue,即消息队列, RabbitMQ是由erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队 ...

  9. 使用OPC与PLC通讯 一

    总结自己在opc与自控开发的经验.首先介绍OPC DA模式下的OPC各种操作. 在使用opc时需要引用到 OPCDAAuto.dll 这个类库. 在项目引用后需要注册这个类库,否则程序跑起来会报错,& ...

  10. JSP九大内置对象及四个作用域详解

    一共有九大内置对象: request.response.out.session.application.pageContext.page.config.exception 内置对象(又叫隐含对象),就 ...