NOIP 模拟 $12\; \text{简单的区间}$
题解
签到题
求区间和为 \(k\) 的倍数的区间,我们可以转化为求左右两个端点,其前缀和相等
对于区间最大值,我们可以把其转化为一个值,它能向左,向右扩展的最远边界,一个单调栈即可
我们设一个值 \(i\),它能扩展的左右边界分别为 \(l_i,r_i\) 那么我们将 \(l_i~r_i\) 分为两部分,\(l_i~i\),\(i~r_i\)
枚举较小的那一段(可以证明总复杂度为 \(\mathcal O(nlogn)\) ),在另一段寻找前缀和等于此前缀和加 \(num_i\) 的个数,用一颗动态开点线段树即可
注意:此种做法边界要卡得很细致
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=3e5+7,K=1e6+1;
int num[N],r[N],l[N],st[N],sum[N],nm[N],ans,tp,n,k;
struct Segmenttree{
#define ls(x) T[x].l
#define rs(x) T[x].r
#define up(x) T[x].nm=T[ls(x)].nm+T[rs(x)].nm
struct seg{int l,r,nm;}T[K*20];
int rt[K],tot;
void update(int &x,int p,int l,int r) {
if (!x) x=p(tot);
if (l==r) {p(T[x].nm);return;}
int mid(l+r>>1);
if (p<=mid) update(ls(x),p,l,mid);
else update(rs(x),p,mid+1,r);
up(x);
}
int query(int x,int l,int r,int lt,int rt) {
if (!x) return 0;
if (l<=lt&&rt<=r) return T[x].nm;
int mid(lt+rt>>1),res(0);
if (l<=mid) res+=query(ls(x),l,r,lt,mid);
if (r>mid) res+=query(rs(x),l,r,mid+1,rt);
return res;
}
}T;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(k);
for (ri i(1);i<=n;p(i)) {
read(nm[i]);num[i]=nm[i]%k;
sum[i]=(sum[i-1]+num[i])%k;
T.update(T.rt[sum[i]],i,1,n);
while(tp&&nm[st[tp]]<=nm[i]) r[st[tp--]]=i-1;
l[i]=st[tp]+1;
st[p(tp)]=i;
}
while(tp) r[st[tp--]]=n;
for (ri i(1);i<=n;p(i)) {
if (i==l[i]&&i==r[i]) continue;
if (i-l[i]<=r[i]-i) {
for (ri j(l[i]);j<i;p(j))
ans+=T.query(T.rt[(sum[j-1]+num[i])%k],i,r[i],1,n);
if (i<r[i]) ans+=T.query(T.rt[sum[i]],i+1,r[i],1,n);
} else {
for (ri j(i+1);j<=r[i];p(j))
if (l[i]-1) ans+=T.query(T.rt[(sum[j]-num[i]+k)%k],l[i]-1,i-1,1,n);
else {
ri tmp=(sum[j]-num[i]+k)%k;
ans+=T.query(T.rt[tmp],l[i],i-1,1,n);
if (!tmp) p(ans);
}
if (l[i]-1) ans+=T.query(T.rt[sum[i-1]],l[i]-1,i-2,1,n);
else {
if (i-2) ans+=T.query(T.rt[sum[i-1]],1,i-2,1,n);
if (!sum[i-1]) p(ans);
}
}
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
官方题解做法,为 \(\mathcal O(nlogn)\) 复杂度较优,但其实没什么太大区别
NOIP 模拟 $12\; \text{简单的区间}$的更多相关文章
- NOIP 模拟 $12\; \text{简单的玄学}$
题解 有些难度 对于 \(30pts\) 直接暴力 对于 \(70pts\) 发现规律 \(2^n-a\) 与 \(a\;\;(a\in [1,2^n))\) 分解质因数后,\(2\) 的次数相同 \ ...
- NOIP 模拟 $12\; \text{简单的填数}$
题解 一个纯的贪心,被我搞成 \(dp\) 了,最后把错解删掉了,骗了 \(10pts\) 考虑如何贪心,设置一种二元组 \((x,l)\),\(x\) 表示当前值,\(l\) 表示当前最长连续长度. ...
- noip模拟12[简单的区间·简单的玄学·简单的填数]
noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\( ...
- (译文)12个简单(但强大)的JavaScript技巧(二)
原文链接: 12 Simple (Yet Powerful) JavaScript Tips 其他链接: (译文)12个简单(但强大)的JavaScript技巧(一) 强大的立即调用函数表达式 (什么 ...
- (译文)12个简单(但强大)的JavaScript技巧(一)
原文连接: 12 Simple (Yet Powerful) JavaScript Tips 我将会介绍和解析12个简单但是强大的JavaScript技巧. 这些技巧所有的JavaScript程序员都 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
- ubuntu 12.04 简单配置samba服务,实现主机与虚拟机互通(设置Windows虚拟盘)
环境: virtualbox ubuntu12.04 首先,如果你到这步了,说明你的window与linux的网络已经配好了,他们之间是可以互相Ping通的,如果没有,请看我以前的文章 由于我linu ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
随机推荐
- Java多线程事务管理
今天要讨论的是"Java实现多线程单条数据事务管理",在此之前,顺便回顾一下实现多线程的几种方式 实现多线程的三种方式 一.继承Thread类 第一种方法是继承Thread类,重写 ...
- Java 设置PDF跨页表格重复显示表头行
在创建表格时,如果表格内容出现跨页显示的时候,默认情况下该表格的表头不会在下一页显示,在阅读体验上不是很好.下面分享一个方法如何在表格跨页是显示表格的表头内容,这里只需要简单使用方法 grid.set ...
- 可搜索加密技术 - 学习笔记(二)- 预备知识:HMAC-SHA256函数
由于在之后的算法中会用到HMAC-SHA256函数,这里先简单对其进行一个介绍. 一.HMAC算法 什么是HMAC算法? HMAC是密钥相关的哈希运算消息认证码(Hash-based Message ...
- C语言:size_t类型
size_t 的全称应该是size type,就是说"一种用来记录大小的数据类型".通常我们用sizeof(XXX)操作,这个操作所得到的结果就是size_t类型.因为size_t ...
- CSS从入门到喜欢,从喜欢到着魔
如果把网页比作一个人的话,html就是他的骨架,而css是他的皮肤,javascript是神经控制着行动.html,css,javascript都是构建网页的核心技术. CSS简介 css指的是层叠样 ...
- 【算法学习笔记】概率与期望DP
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...
- 【LeetCode】111. 二叉树的最小深度
111. 二叉树的最小深度 知识点:二叉树,递归 题目描述 给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明:叶子节点是指没有子节点的节点. 示例 输入 ...
- SSM框架中mapper层,增删改查,如何实现
1.批量修改 <!-- 批量修改 MySQL--> <update id="updateBatch" parameterType="java.lang. ...
- linux下快速安装pyenv管理多版本python
起因 一直服务器python项目都是放docker跑,这次为了测试,不得不在宿主机跑,就必须安装python3.7,但是ubuntu16.04下有点麻烦 尝试 源码安装,懒,算了,也不想污染服务器环境 ...
- 使用JavaMailSender 发送邮件
使用JavaMailSender 发送邮件 package com.juvenxu.mvnbook.account.email; import javax.mail.MessagingExceptio ...