Metrics是一个提供服务性能检测工具的Java类库,它提供了功能强大的性能指标工具库用于度量生产环境中的各关键组件性能。

度量类型

Metrics提供了以下几种基本的度量类型:

  • Gauge:用于提供自定义度量。
  • Counter:计数器,本质是一个java.util.concurrent.atomic.LongAdder
  • Histogram:直方图数据。
  • Meter:统计系统中某一事件的响应速率,如TPS、QPS。该项指标值直接反应系统当前的处理能力
  • Timer:计时器,是MeterHistogram的结合,可以统计接口请求速率和响应时长。

Gauge

Gauge是对一项值的瞬时度量。我们可以通过实现Gauge接口来根据业务场景自定义度量。

例如,想要度量队列中处于等待状态的作业数量:

public class QueueManager {
private final Queue queue; public QueueManager(MetricRegistry metrics, String name) {
this.queue = new Queue();
// 通过MetricRegistry 的register方法注册Gauge度量
metrics.register(MetricRegistry.name(QueueManager.class, name, "size"),
new Gauge<Integer>() {
@Override
public Integer getValue() {
return queue.size();
}
});
}
}

官方目前提供了以下几种Gauge实现:

Counter

Counter是一个常规计数器,用于对某项指标值进行累加或者递减操作。

Counter本质是一个java.util.concurrent.atomic.LongAdder,在多线程同时更新计数器的场景下,当并发量较大时,LongAdderAtomicLong具有更高的吞吐量,当然空间资源消耗也更大一些。

final Counter evictions = registry.counter(name(SessionStore.class, "cache-evictions"));
evictions.inc();
evictions.inc(3);
evictions.dec();
evictions.dec(2);

Histograms

Histogram反应的是数据流中的值的分布情况。包含最小值、最大值、平均值、中位数、p75、p90、p95、p98、p99以及p999数据分布情况。

private final Histogram responseSizes = metrics.histogram(name(RequestHandler.class, "response-sizes"));

public void handleRequest(Request request, Response response) {
// etc
responseSizes.update(response.getContent().length);
}

Histogram计算分位数的方法是先对整个数据集进行排序,然后取排序后的数据集中特定位置的值(比如p99就是取倒序1%位置的值)。这种方式适合于小数据集或者批处理系统,不适用于要求高吞吐量、低延时的服务。

对于数据量较大,系统对吞吐量、时延要求较大的场景,我们可以采用抽样的方式获取数据。通过动态地抽取程序运行过程中的能够代表系统真实运行情况的一小部分数据来实现对整个系统运行指标的近似度量,这种方法叫做蓄水池算法(reservoir sampling)。

Metrics中提供了各式各样的Reservoir实现:

Meter

Meter用于度量事件响应的平均速率,它表示的是应用程序整个运行生命周期内的总速率(总请求响应量/处理请求的总毫秒数,即每秒请求数)。

除此之外,Meter还提供了1分钟、5分钟以及15分钟的动态平均响应速率。

final Meter getRequests = registry.meter(name(WebProxy.class, "get-requests", "requests"));
getRequests.mark();
getRequests.mark(requests.size());

Timer

Timer会度量服务的响应速率,同时也会统计服务响应时长的分布情况。

final Timer timer = registry.timer(name(WebProxy.class, "get-requests"));

final Timer.Context context = timer.time();
try {
// handle request
} finally {
context.stop();
}

Reporters

通过上述各项度量监测服务指标后,我们可以通过Reporters报表导出度量结果。metrics-core模块中实现了以下几种导出指标的Report:

Console Reporters

定时向控制台发送服务的各项指标数据。

final ConsoleReporter reporter = ConsoleReporter.forRegistry(registry)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();
reporter.start(1, TimeUnit.MINUTES);

CsvReporter

定时向给定目录下的.csv文件追加服务各项指标数据。对于每一项指标都会在指定目录下创建一个.csv文件,然后定时(本例中是1s)向每个文件中追加指标最新数据。

final CsvReporter reporter = CsvReporter.forRegistry(registry)
.formatFor(Locale.US)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build(new File("~/projects/data/"));
reporter.start(1, TimeUnit.SECONDS);

JmxReporter

将服务的各项度量指标通过JMX MBeans暴露出来,之后可以使用VisualVM查看指标数据。生产环境不建议使用。

final JmxReporter reporter = JmxReporter.forRegistry(registry).build();
reporter.start();

Slf4jReporter

Slf4jReporter允许我们将服务的指标数据作为日志记录到日志文件中。

final Slf4jReporter reporter = Slf4jReporter.forRegistry(registry)
.outputTo(LoggerFactory.getLogger("com.example.metrics"))
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();
reporter.start(1, TimeUnit.MINUTES);

如何使用

直接引用

直接依赖Metrics的核心库,通过其提供的各类API完成服务指标数据度量。

  1. 引入Maven依赖
<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>${metrics.version}</version>
</dependency>
  1. 创建一个MetricRegistry对象,它是Metrics类库的核心类,所有的应用指标都需要注册到MetricRegistry
// 实例化MetricsRegistry
final MetricRegistry metrics = new MetricRegistry(); // 开启Console Reporter
startConsoleReporter(); Meter requests = metrics.meter(name(MetricsConfig.class, "requests", "size"));
requests.mark(); void startReport() {
ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();
reporter.start(1, TimeUnit.SECONDS);
}

整合Spring

  1. 引入Maven依赖
<dependency>
<groupId>com.ryantenney.metrics</groupId>
<artifactId>metrics-spring</artifactId>
<version>3.1.3</version>
</dependency>
  1. 通过Java注解配置Metrics。
import java.util.concurrent.TimeUnit;
import org.springframework.context.annotation.Configuration;
import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.MetricRegistry;
import com.codahale.metrics.SharedMetricRegistries;
import com.ryantenney.metrics.spring.config.annotation.EnableMetrics;
import com.ryantenney.metrics.spring.config.annotation.MetricsConfigurerAdapter; @Configuration
@EnableMetrics
public class SpringConfiguringClass extends MetricsConfigurerAdapter { @Override
public void configureReporters(MetricRegistry metricRegistry) {
// registerReporter allows the MetricsConfigurerAdapter to
// shut down the reporter when the Spring context is closed
registerReporter(ConsoleReporter
.forRegistry(metricRegistry)
.build())
.start(1, TimeUnit.MINUTES);
} } @Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import({DelegatingMetricsConfiguration.class})
public @interface EnableMetrics {
// 默认false表示使用JDK动态代理,设置为true时表示使用CGLIB动态代理(当使用基于类的服务暴露方式时)
boolean exposeProxy() default false;
// 设置为true时,目标对象可以通过AopContext.currentProxy()访问封装它的代理
boolean proxyTargetClass() default false;
}

使用限制

因为Spring AOP中,只有声明为public的方法可以被代理,所以@Timed, @Metered, @ExceptionMetered以及 @Countednon-public无法生效。

因为@Gauge注解不涉及代理,所以它可以被应用在non-public属性和方法上。

public class MetricsBeanPostProcessorFactory {
private MetricsBeanPostProcessorFactory() {
} public static AdvisingBeanPostProcessor exceptionMetered(MetricRegistry metricRegistry, ProxyConfig proxyConfig) {
return new AdvisingBeanPostProcessor(ExceptionMeteredMethodInterceptor.POINTCUT, ExceptionMeteredMethodInterceptor.adviceFactory(metricRegistry), proxyConfig);
} public static AdvisingBeanPostProcessor metered(MetricRegistry metricRegistry, ProxyConfig proxyConfig) {
return new AdvisingBeanPostProcessor(MeteredMethodInterceptor.POINTCUT, MeteredMethodInterceptor.adviceFactory(metricRegistry), proxyConfig);
} public static AdvisingBeanPostProcessor timed(MetricRegistry metricRegistry, ProxyConfig proxyConfig) {
return new AdvisingBeanPostProcessor(TimedMethodInterceptor.POINTCUT, TimedMethodInterceptor.adviceFactory(metricRegistry), proxyConfig);
} public static AdvisingBeanPostProcessor counted(MetricRegistry metricRegistry, ProxyConfig proxyConfig) {
return new AdvisingBeanPostProcessor(CountedMethodInterceptor.POINTCUT, CountedMethodInterceptor.adviceFactory(metricRegistry), proxyConfig);
} public static GaugeFieldAnnotationBeanPostProcessor gaugeField(MetricRegistry metricRegistry) {
return new GaugeFieldAnnotationBeanPostProcessor(metricRegistry);
} public static GaugeMethodAnnotationBeanPostProcessor gaugeMethod(MetricRegistry metricRegistry) {
return new GaugeMethodAnnotationBeanPostProcessor(metricRegistry);
} public static CachedGaugeAnnotationBeanPostProcessor cachedGauge(MetricRegistry metricRegistry) {
return new CachedGaugeAnnotationBeanPostProcessor(metricRegistry);
} public static MetricAnnotationBeanPostProcessor metric(MetricRegistry metricRegistry) {
return new MetricAnnotationBeanPostProcessor(metricRegistry);
} public static HealthCheckBeanPostProcessor healthCheck(HealthCheckRegistry healthRegistry) {
return new HealthCheckBeanPostProcessor(healthRegistry);
}
}

除此此外,在一个方法中调用处于同一个类中的另一个带有Metrics注解的方法时,方法执行流程不会经过代理。

服务监控 | 彻底搞懂Dropwizard Metrics一篇就够了的更多相关文章

  1. 就是要让你搞懂Nginx,这篇就够了!

    开源Linux 长按二维码加关注~ 作者:渐暖° 出处:blog.csdn.net/yujing1314/article/details/107000737 来源:公众号51CTO技术栈 Nginx ...

  2. 程序员要搞明白CDN,这篇应该够了

    最近在了解边缘计算,发现我们经常听说的CDN也是边缘计算里的一部分.那么说到CDN,好像只知道它中文叫做内容分发网络.那么具体CDN的原理是什么?能够为用户在浏览网站时带来什么好处呢?解决这两个问题是 ...

  3. 线上服务的FGC问题排查,看这篇就够了!

    线上服务的GC问题,是Java程序非常典型的一类问题,非常考验工程师排查问题的能力.同时,几乎是面试必考题,但是能真正答好此题的人并不多,要么原理没吃透,要么缺乏实战经验. 过去半年时间里,我们的广告 ...

  4. 架构师必须搞懂DNS【转】

    DNS,全称Domain Name System,即域名系统,搞清楚,它不是DNF地下城与勇士. DNS是怎么来的,我们知道要访问一个服务器的资源可以通过IP的形式访问,但IP地址比较难记,也不方便读 ...

  5. 搞懂分布式技术28:微服务(Microservice)那点事

    搞懂分布式技术28:微服务(Microservice)那点事 微服务(Microservice)那点事 肥侠 2016-01-13 09:46:53 浏览58371 评论15 分布式系统与计算 微服务 ...

  6. 微服务监控之二:Metrics+influxdb+grafana构建监控平台

    系统开发到一定的阶段,线上的机器越来越多,就需要一些监控了,除了服务器的监控,业务方面也需要一些监控服务.Metrics作为一款监控指标的度量类库,提供了许多工具帮助开发者来完成自定义的监控工作. 使 ...

  7. 微服务监控之一:Metrics让微服务运行更透明

    摘要 让微服务运行状态清晰可见. 嘉宾演讲视频回顾及PPT:http://t.cn/R8b6i85 Metrics是什么 直译是“度量”,不同的领域定义有所区别,在微服务领域中的定义: “对微服务的某 ...

  8. 搞懂分布式技术3:初探分布式协调服务zookeeper

    搞懂分布式技术3:初探分布式协调服务zookeeper 1.Zookeepr是什么 Zookeeper是一个典型的分布式数据一致性的解决方案,分布式应用程序可以基于它实现诸如数据发布/订阅,负载均衡, ...

  9. 面试都在问的微服务、服务治理、RPC、下一代微服务框架... 一文带你彻底搞懂!

    文章每周持续更新,「三连」让更多人看到是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) 单体式应用程序 与微服务相对的另一个概念是传统的单体式应用程序( ...

随机推荐

  1. 开源企业平台Odoo 15社区版之项目管理应用模块功能简介

    项目管理无论是各类证书的认证,如PMP.软考高级的信息系统项目管理师.中级的系统集成项目管理工程师等,还是企业实践都有着广泛的实际应用中,至今还是处于热门的行业,合格的或优化的项目经理还是偏少,对于I ...

  2. CF78B Easter Eggs 题解

    Content 有一个有 \(n\) 个点的环,你可以将其染成一种颜色.一共有 \(7\) 种颜色(R,O,Y,G,B,I,V)可以选择.你的染色方案应该满足下面的要求: 每一个点都要被染色,且 \( ...

  3. WSL docker打通容器间通信和追加端口映射

    最近在docker中搭建一个服务,需要有多个容器通信.这里简单记录一下如何在容器间进行通信,同时说一下已经存在的容器如何追加端口映射. 增加网桥 容器间通信的目的是不适用IP而是使用容器名称进行网络通 ...

  4. JAVA使用IDEA本地调试服务的代码

    然后将启动参数的 jdwp=transport=dt_socket,server=y,suspend=n,address=8086 放到服务器上 在执行jar包的命令加入这个 例如 java -jar ...

  5. SpringBoot整合knife4j框架(可生成离线接口文档),并设置接口请求头token默认值

    功能和swagger类似 官网地址:https://doc.xiaominfo.com/knife4j/ 这个框架可以设置返回字段的描述 引入依赖 <dependency> <gro ...

  6. UDP&串口调试助手用法(2)

    通道的是创建.删除.编辑.链接.断开 通道创建 通道删除 先选择要删除的通道,再点击删除通道即可 通道参数编辑 双击创建的通道 即可编辑通道 通道链接 通道创建成功,提示 点击链接即可链接通道 通道断 ...

  7. Qt的VS插件下载地址

    地址 https://download.qt.io/official_releases/vsaddin/2.4.3/

  8. 【LeetCode】186. Reverse Words in a String II 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 每个单词单独翻转+总的翻转 日期 题目地址:https ...

  9. 【九度OJ】题目1170:找最小数 解题报告

    [九度OJ]题目1170:找最小数 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1170 题目描述: 第一行输入一个数n,1 < ...

  10. 【LeetCode】331. Verify Preorder Serialization of a Binary Tree 解题报告(Python)

    [LeetCode]331. Verify Preorder Serialization of a Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https:/ ...