Leetcode No.119 Pascal's Triangle II(c++实现)
1. 题目
1.1 英文题目
Given an integer rowIndex, return the rowIndexth (0-indexed) row of the Pascal's triangle.
In Pascal's triangle, each number is the sum of the two numbers directly above it as shown:
1.2 中文题目
输出杨辉三角形的指定行
1.3输入输出
| 输入 | 输出 |
|---|---|
| rowIndex = 3 | [1,3,3,1] |
| rowIndex = 0 | [1] |
| rowIndex = 1 | [1,1] |
1.4 约束条件
0 <= rowIndex <= 33
2. 实验平台
IDE:VS2019
IDE版本:16.10.1
语言:c++11
3. 分析
这一题最简单粗暴的方法就是先求出到指定行的杨辉三角形,之后再取最后一行作为结果,代码为:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<vector<int>> ans(rowIndex + 1);
for(int i = 0; i < rowIndex + 1; i++)
{
ans[i].resize(i + 1);
ans[i][0] = ans[i][i] = 1;
for(int j = 1; j < i; j++)
{
ans[i][j] = ans[i - 1][j - 1] + ans[i - 1][j];
}
}
return ans[rowIndex];
}
};
这样做也固然没问题,但是算法很冗杂,不够优化,我们可以适当优化下,不需要把所有行的结果都存储起来,只需要保存最后一行。新代码如下:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
vector<int> temp(i + 1);
temp[0] = temp[i] = 1;
for(int j = 1; j < i; j++)
{
temp[j] = ans[j - 1] + ans[j];
}
ans = temp;
}
return ans;
}
};
但是我们提交后发现算法时间和空间复杂度都没变,于是我在想还有没有优化空间,我发现每行计算时都需要重新定义temp,并为其开辟内存空间,有待优化,故可以将其提前定义,并在每行计算时重定义temp大小,代码如下:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
vector<int> temp;
for(int i = 0; i < rowIndex + 1; i++)
{
temp.resize(i + 1);
temp[0] = temp[i] = 1;
for(int j = 1; j < i; j++)
{
temp[j] = ans[j - 1] + ans[j];
}
ans = temp;
}
return ans;
}
};
这次性能不错。但是我觉得有个temp,还是很繁琐,那么能不能去掉temp呢,但是如果去掉temp,递推那一步就会涉及混乱,考虑到递推关系式是j-1和j,于是我们可以在递推时进行反向递推,代码如下:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
ans.resize(i + 1);
ans[0] = ans[i] = 1;
for(int j = i - 1; j > 0; j--)
ans[j] += ans[j - 1];
}
return ans;
}
};
这次算法空间复杂度又提高了,另外,每次都要重新定义ans的尺寸,能不能不这么做呢?我想到每次循环只是比之前尺寸多1,因此可以不重新定义尺寸,而是尺寸加1,即使用push_back();具体代码如下:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
ans.push_back(1);
for(int j = i - 1; j > 0; j--)
ans[j] += ans[j - 1];
}
return ans;
}
};
Leetcode No.119 Pascal's Triangle II(c++实现)的更多相关文章
- LeetCode OJ 119. Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- 【一天一道LeetCode】#119. Pascal's Triangle II
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...
- 【LeetCode】119. Pascal's Triangle II
题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [ ...
- leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle
118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...
- 118/119. Pascal's Triangle/II
原文题目: 118. Pascal's Triangle 119. Pascal's Triangle II 读题: 杨辉三角问题 '''118''' class Solution(object): ...
- 119. Pascal's Triangle II@python
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...
- [LeetCode] 119. Pascal's Triangle II 杨辉三角之二
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...
- [LeetCode]题解(python):119 Pascal's Triangle II
题目来源 https://leetcode.com/problems/pascals-triangle-ii/ Given an index k, return the kth row of the ...
- LeetCode 119. Pascal's Triangle II (杨辉三角之二)
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
随机推荐
- Linux基础命令学习记录(一)
使用频繁的Linux命令 一.文件和目录 1.cd命令 cd / 进入根目录 cd .. 返回上一级目录 cd ../.. 返回上两级目录 cd 进入个人的主目录 cd ~ 进入个人的主目录 cd - ...
- Java中生成唯一标识符的方法
有时候业务需要生成唯一标识符,但又不能依赖于数据库中自动递增的字段产生唯一ID,比如多表同一字段需要统一一个唯一ID,此时我们就需要用程序来生成一个唯一的全局ID. UUID UUID是指在一台机器上 ...
- 继承(extends), 多态 , 抽象(abstract)接口() 易混难点解析
特性 java是单继承的,一个类直接继承的父类只能有唯一的一个 java中父类可以有多个子类 Object是所有类的父类,一个类没有父类则默认继承Object; 继承中的重写 子类重写方法访问权限不能 ...
- java面试一日一题:再谈垃圾回收器中的串行、并行、并发
问题:请讲下java中垃圾回收器的串行.并行.并发 分析:该问题主要考察在垃圾回收过程中垃圾回收线程和用户线程的关系 回答要点: 主要从以下几点去考虑, 1.串行.并行.并发的概念 2.如何考虑串行. ...
- PyTorch 进行 Neural-Transfer
PyTorch 进行 Neural-Transfer 1.简介 本文讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural- ...
- C语言代码区错误以及编译过程
C语言代码区错误 欲想了解C语言代码段会有如何错误,我们必须首先了解编译器是如何把C语言文本信息编译成为可以执行的机器码的. 背景介绍 测试使用的C语言代码 导入标准库,定义宏变量,定义结构体,重命名 ...
- python+selenium基础篇,By定位元素
1.By定位和find_element_by_XXXXXX是一样的,如下图所示,定位元素的方法都是一样的 2.使用By定位代码如下所示 from selenium import webdriver f ...
- 第五周 Spring框架
一.Spring框架设计 Spring framework 6大模块 1.1 Spring AOP AOP: 面向切面编程 Spring 早期版本的核心功能,管理对象声明周期和对象装配 为了实现管理和 ...
- ApplicationListener接口,在spring容器初始化后执行的方法
一.如果我们希望在Spring容器将所有的Bean都初始化完成之后,做一些操作,那么就可以使用ApplicationListener接口,实现ApplicationListener接口中的onAppl ...
- 【NX二次开发】获取面的类型 UF_MODL_ask_face_type
源码: extern DllExport void ufsta(char *param, int *returnCode, int rlen) { UF_initialize(); int face_ ...