正题

题目链接:https://www.luogu.com.cn/problem/P1791


题目大意

有\(n\)个人,雇佣第\(i\)个需要\(A_i\)的费用,对于\(E_{i,j}\)表示如果\(i\)选了的话,选择\(j\)会获得\(E_{i,j}\)的费用,不选\(j\)会花费\(E_{i,j}\)的费用。

\(1\leq n\leq 1000\)


解题思路

考虑网最大权值闭合图,先加上所有可以获得的权值,然后考虑需要失去的最小权值。

因为每个人可以选或者不选,那么就可以让\(s\)连接\(i\)且\(i\)连接\(t\)这样两边必须割掉一条表示选择或者不选择。

考虑让\(s->i\)表示选择,那么\(s->i\)权值为\(A_i\)。

\(i->t\)表示不选择那么所有由\(i\)产生的费用都不能获得,权值为\(\sum_{j=1}^mE_{i,j}\)。

然后对于一个\(E_{i,j}\)如果\(i\)选择了且\(j\)没有选择那么就会失去\(2\times E_{i,j}\)的流量,在\(i\)和\(j\)之间连一条\(2\times E_{i,j}\)的就好了。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=2e4+10,inf=2147483647;
struct node{
ll to,next,w;
}a[N*4];
ll n,s,t,tot,cnt,A[N],ls[N],dep[N],ans;
queue<int> q;
void addl(ll x,ll y,ll w){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;
return;
}
bool bfs(){
memset(dep,0,sizeof(dep));dep[s]=1;
while(!q.empty())q.pop();q.push(s);
while(!q.empty()){
ll x=q.front();q.pop();
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(dep[y]||!a[i].w)continue;
dep[y]=dep[x]+1;
if(y==t)return 1;
q.push(y);
}
}
return 0;
}
ll dinic(ll x,ll flow){
if(x==t)return flow;
ll rest=0,k;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(dep[y]!=dep[x]+1||!a[i].w)continue;
rest+=(k=dinic(y,min(a[i].w,flow-rest)));
a[i].w-=k;a[i^1].w+=k;
if(rest==flow)return flow;
}
if(!rest)dep[x]=0;
return rest;
}
signed main()
{
scanf("%lld",&n);
s=n+1;t=s+1;tot=1;
for(ll i=1;i<=n;i++){
ll x;
scanf("%lld",&x);
addl(s,i,x);
}
for(ll i=1;i<=n;i++){
ll S=0;
for(ll j=1;j<=n;j++){
ll x;scanf("%lld",&x);
if(!x)continue;
S+=x;addl(i,j,2*x);
}
addl(i,t,S);ans+=S;
}
while(bfs())
ans-=dinic(s,inf);
printf("%lld\n",ans);
return 0;
}

P1791-[国家集训队]人员雇佣【最大权闭合图】的更多相关文章

  1. luoguP1791 [国家集训队]人员雇佣

    题意 考虑先将所有价值加上,之后用最小割求最小代价. 考虑每个点对\((i,j)\),我们这样建边: 1.源点向每个点i连\(\sum\limits E_{i,j}\)容量的边. 2.每个点向汇点连雇 ...

  2. LibreOJ #6001. 「网络流 24 题」太空飞行计划 最大权闭合图

    #6001. 「网络流 24 题」太空飞行计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  3. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  4. hdu 3917 修路与公司 最大权闭合图 好题

    Road constructions Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  6. 【TYVJ】1338 QQ农场(最大流+最大权闭合图)

    http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...

  7. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

  8. 最大权闭合图最大获益(把边抽象为点)HDU3879

    题意:给出一个无向图,每个点都有点权值代表花费,每条边都有利益值,代表形成这条边就可以获得e[i]的利益,问选择那些点可以获得最大利益是多少? 分析:把边抽象成点,s与该点建边,容量是利益值,每个点与 ...

  9. 最大权闭合图hdu3996

    定义:最大权闭合图:是有向图的一个点集,且该点集的所有出边都指向该集合.即闭合图内任意点的集合也在改闭合图内,给每个点分配一个点权值Pu,最大权闭合图就是使闭合图的点权之和最大. 最小割建边方式:源点 ...

  10. BZOJ 1565 植物大战僵尸(最大权闭合图)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1565 题意:植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性: ...

随机推荐

  1. mysql优化: 内存表和临时表

    由于直接使用临时表来创建中间表,其速度不如人意,因而就有了把临时表建成内存表的想法.但内存表和临时表的区别且并不熟悉,需要查找资料了.一开始以为临时表是创建后存在,当连接断开时临时表就会被删除,即临时 ...

  2. Contos6.5卸载自带JDK

    1.查看CentOS6.5自带的JDK是否已经安装#Java -version2.查看JDK的信息#rpm -qa|grep java3.卸载JDK#rpm -e --nodeps tzdata-ja ...

  3. air530GPS数据通过air202上传阿里云

    写硬件博客真是太难了 GPS/北斗 导航模块 Air530开发板G1学习日记 上面这个博客详细介绍了如何测试使用Air530模块根据稳重[Air530 和Air 202 进行配合使用,实现2G GPR ...

  4. 进程上下文&中断上下文

    文章出自http://hi.baidu.com/bkhcvzdvmjfkpyr/item/5444001fa68d065bf1090ea6 处理器总处于以下状态中的一种: 1.内核态,运行于进程上下文 ...

  5. CSS定位(慕课网学习笔记)

    定位模型 static自然模型 relative相对定位模型 absolute绝对定位模型 fixed固定定位模型 sticky磁铁定位模型 possition之static(默认的设置)(静态定位. ...

  6. Redis cluster的部署

    Redis 集群是一个提供在多个Redis间节点间共享数据的程序集. Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性能,在高负载的情况下 ...

  7. python 动图gif合成与分解

    合成 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import imageio def main(imgs_ ...

  8. Python实现Thrift Server

    近期在项目中存在跨编程语言协作的需求,使用到了Thrift.本文将记录用python实现Thrift服务端的方法. 环境准备 根据自身实际情况下载对应的Thrift编译器,比如我在Windows系统上 ...

  9. 使用 baget 搭建私有 nuget 私有服务

    现在几乎所有语言都提供包管理工具,比如 JavaScript 的 npm ,Java 的 Maven ,Dart 的 pub ..Net 程序当然是 NuGet .NuGet 也出现很多年了,奇怪的是 ...

  10. Centos7最小化系统安装_配置

    本文总结了作者使用centos最小化安装时,碰到的问题和解决方案. 网络问题.作者使用虚拟机安装时,网卡并没有激活.操作: 1 cd /etc/sysconfig/network-script 2 v ...