PTA二叉搜索树的操作集 (30分)
PTA二叉搜索树的操作集 (30分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
- 函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
- 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
- 函数FindMin返回二叉搜索树BST中最小元结点的指针;
- 函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
【程序实现】
BinTree Insert( BinTree BST, ElementType X ) {
if( !BST) {
BST = (BinTree)malloc(sizeof(BinTree));
BST->Data = X;
BST->Left = BST->Right = NULL;
return BST;
}
else if (X < BST->Data)
BST->Left = Insert(BST->Left , X);
else if(X > BST->Data)
BST->Right = Insert(BST->Right , X);
return BST;
}
Position Find( BinTree BST, ElementType X ) {
if (!BST)
return NULL;
if (BST->Data == X)
return BST;
else if (X < BST->Data)
return Find(BST->Left , X);
else if(X > BST->Data)
return Find(BST->Right , X);
}
Position FindMin( BinTree BST ) {
if (BST)
while(BST->Left)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST ) {
if (BST)
while(BST->Right)
BST = BST->Right;
return BST;
}
BinTree Delete( BinTree BST, ElementType X ) {
if (!BST)
printf("Not Found\n");
else {
if (X < BST->Data)
BST->Left = Delete(BST->Left , X);
else if(X > BST->Data)
BST->Right = Delete(BST->Right , X);
else {
if (BST->Left && BST->Right) {
BinTree t = FindMin(BST->Right);
BST->Data = t->Data;
BST->Right = Delete(BST->Right , t->Data);
}
else {
if (BST->Left)
BST = BST->Left;
else
BST = BST->Right;
}
}
}
return BST;
}
PTA二叉搜索树的操作集 (30分)的更多相关文章
- 04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】
04-树7 二叉搜索树的操作集(30 point(s)) 本题要求实现给定二叉搜索树的5种常用操作. 函数接口定义: BinTree Insert( BinTree BST, ElementType ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...
- PTA 7-2 二叉搜索树的结构(30 分)
7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...
- [PTA] 数据结构与算法题目集 6-12 二叉搜索树的操作集
唯一比较需要思考的删除操作: 被删除节点有三种情况: 1.叶节点,直接删除 2.只有一个子节点,将子节点替换为该节点,删除该节点. 3.有两个子节点,从右分支中找到最小节点,将其值赋给被删除节点的位置 ...
- L3-1 二叉搜索树的结构 (30 分)
讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...
- L3-016 二叉搜索树的结构 (30 分) 二叉树
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
- L3-016 二叉搜索树的结构 (30 分)
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
- L2-004 这是二叉搜索树吗? (25 分) (树)
链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题目: 一棵二叉搜索树可被递归地定义为 ...
随机推荐
- django 常用教程网址
第一:url中反向解析教程网址 https://docs.djangoproject.com/zh-hans/2.2/ref/templates/builtins/#url
- P3480-[POI2009]KAM-Pebbles【阶梯博弈】
正题 题目链接:https://www.luogu.com.cn/problem/P3480 题目大意 \(n\)个石头堆上进行\(\text{Nim}\)游戏,不过需要满足每次操作前后都有\(a_i ...
- 11.4.3 LVS-TUN
LVS-TUN 用IP隧道技术实现虚拟服务器。这种方式是在集群的节点不在同一个网段时可用的转发机制,是将IP包封装在其他网络流量中的方法。为了安全的考虑,应该使用隧道技术中的VPN,也可使用租用专线。 ...
- SpringPlugin-Core在业务中的应用
前言 一直负责部门的订单模块,从php转到Java也是如此,换了一种语言来实现订单相关功能.那么Spring里有很多已经搭建好基础模块的设计模式来帮助我们解耦实际业务中的逻辑,用起来非常的方便!就比如 ...
- 微信小程序_快速入门01
这段时间,嗯,大四课程已经结束了,工作也已经找到了,但是呢,到公司报道的时间还没到,哈哈,马上就开始人生的第一份工作了,怎么说确实有点期待~ 在这段时间一方面为第一份工作做各种准备,另一方面也没有停止 ...
- 第四代富士X100F操作学习
前言 本文为自己通过B站的UP主[阿布垃机手册]整理.原视频地址:[阿布垃机手册][布瞎BB]富士 X100F 相机外部按键 拍人像自己的设置 [X100F相机光圈大小支持F2到F16+Auto]光圈 ...
- JDK里常见容器总结
自己总结. 扩容 线程安全 是否支持null 的key 说明 hashmap 2*length 否 是 1.8以后增加红黑树.提高检索效率 hashtable 是 否 官方不建议使 ...
- RBAC 权限管理模型
一.RBAC模型--基于角色的访问控制 什么是RBAC RBAC(Role-Based Access Control)基于角色的访问控制.这是从传统的权限模型的基础之上,改进而来并且相当成熟的权限模型 ...
- [对对子队]会议记录5.25(Scrum Meeting11)
今天已完成的工作 吴桐雨 工作内容:设计第10.11关 相关issue:设计额外关卡 相关签入:level10 level11 吴昭邦 工作内容:写测试代码 相关issue:测试初 ...
- [软工顶级理解组] Alpha阶段项目展示
目录 团队成员 软件介绍 项目简介 预期典型用户 功能描述 预期目标用户数 用户反馈 团队管理 分工协作 项目管理 取舍平衡 代码管理 程序测试 代码规范 文档撰写 继续开发指导性 用户沟通 需求分析 ...