Solution Set -「NOIP Simu.」20221024
\(\mathscr{A}\sim\) 断
给定一棵含有 \(n\) 个点的树, 所有点初始时为白色. 再给出 \(m\) 个形如 \((u,v)\) 的点对, 要求 \(u\) 到 \(v\) 的简单路径上存在至少一个黑点. 求最少将多少个点涂黑, 给出一组方案.
\(n,m\le2\times10^6\).
Tag:「水题无 tag」
随便选个根, 然后递归构造, 能不涂黑就不黑. 可以容易做到 \(\mathcal O(n+m\log n)\), 卡卡常能过. 如果写个四毛子求 LCA 可以做到 \(\mathcal O(n+m)\).
\(\mathscr{B}\sim\) 数
称一棵含有 \(n\) 个点, 以 \(1\) 为根的有根树合法, 当且仅当对于 \(u\in[1,n)\), 都有 \(|p_u-p_{u+1}|=1\), 其中 \(p_u\) 表示 \(u\) 的父亲, \(p_1=0\). 求所有合法树中, 点 \(k\) 的孩子数量和. 答案模 \(998244353\).
\(n,k\le2\times10^6\).
Tags:「A.数学-数学推导」「B.模型转化」
若按标号升序确定每个结点的父亲, 那么点 \(u\) 的位置选取只于 \(p_{u-1}\) 有关. 此时有一个简单的 \(\mathcal O(n^2)\) DP: \(f(i,j)\) 表示考虑了前 \(i\) 个点, \(p_i=j\) 时合法树的数量, \(g(i,j)\) 表示考虑了前 \(i\) 个点, \(p_i=j\) 时点 \(k\) 的孩子总数, 可以 \(\mathcal O(1)\) 转移.
接下来的一步也很自然: 以 \(f\) 的转移为例, 设一次转移由 \((i,j)\) 贡献向 \((i',j')\), 此时必然有 \(i'-i=1\), \(j'-j=\pm 1\), 转移系数为 \(1\), 因此这就是在坐标轴上画一条折线, \(f\) 的值就是某种折线的方案数.
有了这个观察, 更细致的描述便是: \(f(i,j)~(i>1)\) 表示从 \((2,1)\) 出发, 走到 \((i,j)\), 仅使用位移 \((1,\pm 1)\), 且不触碰 \(y=0\) 的折线数量. 对应的, \(g\) 则描述了所有折线于 \(y=k\) 的交点数量之和. 我们只需要求出这个和即可.
直接枚举交点位置 \((x,k)\), \((2,1)\to (x,k)\) 的方案数就是 Catalan 数, \((x,k)\to (n,\star)\) 的方案数是一堆 Catalan 数之和, 其实就是杨辉三角第 \(n\) 行上的一段前缀减一段后缀. 如果降序枚举 \(x\), 所求前后缀的长度每次变化量不超过 \(1\), 而组合数行区间和很好递推 --- 将上一行的和 \(\times2\), 再修补边界上常数个值就能得到这一行的和. 这样的递推可以 \(\mathcal O(1)\) 完成. 最终算法复杂度为 \(\mathcal O(n)\).
\(\mathscr{C}\sim\) 覆 *
有 \(n\) 个集合 \(S_{1..n}\), 初始全空. 给出 \(m\) 次操作, 每次操作形如:
- 给出 \(l,r,c\), \(\forall i\in[l,r]\), 令 \(S_i\gets S_i\cup\{c\}\).
- 给出 \(l,r\), 求出 \(\left|\bigcup_{i=l}^rS_i\right|\).
\(n,m\le10^5\).
Tags:「A.分治-CDQ 分治」「B.离线」
被离奇的 \(32\text{Mib}\) 空限整得胡思乱想, 但你看我没把这事儿写在数据范围里说明其中并不重要 qwq.
"包含某个元素" 并不好简单表示, 但 "不包含某个元素", 也即是 "处于这个元素的某个空白区间", 再考虑上时间轴, 就是一个三维偏序样的贡献. 用类似 Chtholly Tree 的东西维护每种元素的空白区间, 在空白区间变更时作为三维偏序的事件加入队列. 最后对事件队列做一个 CDQ 分治算出答案即可. 复杂度 \(\mathcal O(m\log m\log n)\).
\(\mathscr{D}\sim\) 构
给定 \(n\), 构造一个 \(\{a_n\}\), 使得 \(a_i\) 恰为 \(i-1\) 在 \(\{a_n\}\) 中的出现次数.
\(n\le2\times10^6\).
Tag:「A.构造」
一道标准的, 写个暴搜就会正解的构造.
暴搜告诉我们: \(n=1,2,3,6\) 无解, 其他 \(n\le10\) 有解; 当 \(n\ge7\) 的时候容易看出规律:
\]
结束了. 当然是 \(\mathcal O(n)\) 的.
Solution Set -「NOIP Simu.」20221024的更多相关文章
- 「NOIP 2017」列队
题目大意:给定一个 $n times m$ 的方阵,初始时第 $i$ 行第 $j$ 列的人的编号为 $(i-1) times m + j$,$q$ 次给出 $x,y$,让第 $x$ 行 $y$ 列的人 ...
- 「NOIP 2020」微信步数(计数)
「NOIP 2020」微信步数(Luogu P7116) 题意: 有一个 \(k\) 维场地,第 \(i\) 维宽为 \(w_i\),即第 \(i\) 维的合法坐标为 \(1, 2, \cdots, ...
- Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个 ...
- Solution Set -「ARC 107」
「ARC 107A」Simple Math Link. 答案为: \[\frac{a(a+1)\cdot b(b+1)\cdot c(c+1)}{8} \] 「ARC 107B」Quadrup ...
- 「NOIP 2013」 货车运输
题目链接 戳我 \(Solution\) 这一道题直接用\(kruskal\)重构树就好了,这里就不详细解释\(kruskal\)重构树了,如果不会直接去网上搜就好了.接下来讲讲详细过程. 首先构建\ ...
- Solution Set -「ABC 217」
大家好屑兔子又来啦! [A - Lexicographic Order] 说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead} ...
- Note -「动态 DP」学习笔记
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...
- Note -「Lagrange 插值」学习笔记
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- LOJ #2026「JLOI / SHOI2016」成绩比较
很好的锻炼推柿子能力的题目 LOJ #2026 题意 有$n$个人$ m$门学科,第$ i$门的分数为不大于$U_i$的一个正整数 定义A「打爆」B当且仅当A的每门学科的分数都不低于B的该门学科的分数 ...
随机推荐
- Rust编程与项目实战-结构体
<Rust编程与项目实战>(朱文伟,李建英)[摘要 书评 试读]- 京东图书 (jd.com) 在Rust中,结构体(Struct)是一种自定义数据类型,它允许我们将多个相关的值组合在一起 ...
- Java中序列化与反序列化
序列化(Serialization)和反序列化(Deserialization)是计算机科学中用于数据存储和传输的两种基本操作. 序列化: 序列化是将对象的状态信息转换为可以存储或传输的形式的过程.简 ...
- 如何使用Flask编写一个网站
使用Flask编写一个网站是一个相对简单且有趣的过程.Flask是一个用Python编写的轻量级Web应用框架.它易于上手,同时也非常强大,适合构建从简单的博客到复杂的Web应用的各种项目.以下是一个 ...
- 1000%增长!我仅用一个小时搞定!AI智能体+AI小程序=MVP王炸组合!
前言 在万圣节的前一晚上10月30日,一位运营朋友跟我说了个点子万圣节头像生成器,然后大概给我分析了下整体思路,于是我用扣子Coze平台(coze.cn)搭建了一个AI智能体整个过程花了一个小时就搞定 ...
- 一文搞懂 ARM 64 系列: PACISB
1 PAC AMR64提供了PAC(Pointer Authentication Code)机制. 所谓PAC,简单来说就是使用存储在芯片硬件上的「密钥」,一个「上下文」,与「指针地址」进行加密计算, ...
- MoD:轻量化、高效、强大的新型卷积结构 | ACCV'24
来源:晓飞的算法工程笔记 公众号,转载请注明出处 论文: CNN Mixture-of-Depths 论文地址:https://arxiv.org/abs/2409.17016 创新点 提出新的卷积轻 ...
- P4229 某位歌姬的故事
P4229 某位歌姬的故事 处理复杂点的 dp 题. 思路 先考虑 \(n\) 比较小的情况,把每个询问放到线段上,发现每个格子只能满足覆盖最小的限制,于是考虑将询问有效区间排序考虑. 设 \(f[i ...
- php xattr操作文件扩展属性再续
今天偶然发现自己电脑还有一个隐藏硬盘,500G的我平时没挂载,就没用到,然后这次就给它挂载了,然后发现读取文件,操作xattr都很慢,比之前速度慢10倍左右,猜测可能是固态硬盘和机械硬盘的差别关系.看 ...
- 论文泛读《T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification》
发表时间:2021 期刊会议:30th USENIX Security Symposium 论文单位:Virginia Tech 论文作者:Ahmadreza Azizi,Ibrahim Asadul ...
- 攻防世界:web习题之disabled_button
攻防世界:web习题之disabled_button 题目内容 https://adworld.xctf.org.cn/challenges/list 打开网页会发现有一个无法点击的按钮 思路 查看该 ...