2020东京奥运会奖牌榜可视化分析(Pyechart)
数据获取和处理
从网页中获取各国的奖牌数量和排名以及奖牌类型(json格式)。
#奖牌榜数据
url = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/total-table/15/110000004609'
data= requests.get(url).json()
#从json格式的数据中,提前排名(rank)、国家中文名字、国家ID、金牌数、银牌数、铜牌数、奖牌总数
df00 = pd.DataFrame()
for item in data['body']['allMedalData']:
df00 = df00.append([[item['rank'], item['countryName'],item['countryId'],
item['goldMedalNum'], item['silverMedalNum'],
item['bronzeMedalNum'], item['totalMedalNum']]])
df00.columns = ['rank', 'C_name', 'countryId','goldMedalNum',
'silverMedalNum', 'bronzeMedalNum', 'totalMedalNum']
df00.reset_index(drop='index', inplace=True)
df00[['goldMedalNum','silverMedalNum','bronzeMedalNum','totalMedalNum']] = df00[['goldMedalNum','silverMedalNum','bronzeMedalNum','totalMedalNum']].astype(int)
#计数获奖能力(金牌权重为1,银牌为2/3、铜牌为1/3
df00['totalMedalNum2'] = df00['goldMedalNum'] + df00['silverMedalNum'] * 2/3 + df00['bronzeMedalNum'] * 1/3
df00['S_level'] = df00['totalMedalNum2']/np.max(df00['totalMedalNum2'])
df00['S_level'] = df00['S_level'].apply(lambda x :'%.2f'%x)
df00.sort_values('totalMedalNum', ascending=False, inplace=True)
#对照表,用于获取国家英文名称
with open('./国家名中英文对照表.txt', 'r', encoding='utf-8') as fp:
name_list = fp.readlines()
df01 = pd.DataFrame()
for name in name_list:
df01 = df01.append([name.strip().split(':')])
df01.columns=['C_name', 'E_name']
#合并奖牌榜数据
df02 = pd.merge(df00, df01, how='left', on='C_name')
#从json格式的奖牌类型数据中提取数据
url = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/detail-total/15/110000004609'
data2 = requests.get(url).json()
#提取的数据为国家名、国家ID、项目类型、项目分组、获奖名称、奖牌类型
df03 = pd.DataFrame()
for item in data2['body']['medalTableDetail']:
df03 = df03.append([[item['countryName'], item['countryId'],
item['bigItemName'], item['minorItemName'],
item['sportsName'], item['medalType']]])
df03.columns = ['countryName', 'countryId','bigItemName', 'minorItemName', 'sportsName', 'medalType']
df03.reset_index(drop='index', inplace=True)
df03['medalType2'] = df03['medalType'].replace({1:'Gold', 2:'Silver', 3:'Bronze'})
数据可视化
绘制奖牌数量世界地图
def wmap_plot(datas):
w_map = Map()
w_map.add('奖牌数', [list(z) for z in zip(datas['E_name'], datas['totalMedalNum'])],
'world', is_map_symbol_show=False)
w_map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
w_map.set_global_opts(title_opts=opts.TitleOpts(title='2020年东京奥运会奖牌总数分布图'),
visualmap_opts=opts.VisualMapOpts(max_=np.max(datas['totalMedalNum'])),
legend_opts=opts.LegendOpts(is_show=False)
)
return w_map
绘制各国奖牌统计柱状图(前20名)
def bar_plot(datas,n=20):
bar = Bar()
bar.add_xaxis(datas['C_name'][:n].tolist())
bar.add_yaxis('GoldMetal', datas['goldMedalNum'][:n].tolist(), stack='stack1')
bar.add_yaxis('SilverMetal', datas['silverMedalNum'][:n].tolist(), stack='stack1')
bar.add_yaxis('BronzeMetal', datas['bronzeMedalNum'][:n].tolist(), stack='stack1')
bar.set_series_opts(label_opts=opts.LabelOpts(position='inside', font_size=8))
bar.set_global_opts(title_opts=opts.TitleOpts(title='2020年东京奥运会奖牌榜'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45))
)
bar.extend_axis(yaxis=opts.AxisOpts(name='S_level',type_='value'))
line=Line()
line.add_xaxis(datas['C_name'][:n].tolist())
line.add_yaxis('S_level', yaxis_index=1,
y_axis=datas['S_level'][:n].tolist(),
label_opts=opts.LabelOpts(position='top')
)
return bar.overlap(line)
绘制前10名的奖牌类型占比分析图
def pie_plot(datas, country_name, countryId):
df = datas[datas['countryId']==countryId]
df = df.groupby(['bigItemName', 'medalType2']).count()['medalType']
df = df.unstack().fillna(0)
dict_datas = []
for item in df.index:
dict_data = opts.SunburstItem(
name=item,
value=df.loc[item].sum(),
children=[
opts.SunburstItem(name="Gold", value=df.loc[item, 'Gold']),
opts.SunburstItem(name="Silver", value=df.loc[item, 'Silver']),
opts.SunburstItem(name="Bronze", value=df.loc[item, 'Bronze']),
],
)
dict_datas.append(dict_data)
sunburst = (
Sunburst(init_opts=opts.InitOpts(width="1000px", height="600px"))
.add(series_name=country_name, data_pair=dict_datas, radius=['20%', "80%"])
.set_global_opts(title_opts=opts.TitleOpts(title="{}获奖项目比例分析".format(country_name)))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}", font_size=10))
)
return sunburst
def tpie(data01, data02):
t = Timeline()
for item in zip(data01[:10]['C_name'],data01[:10]['countryId']):
pie = pie_plot(datas=data02, country_name=item[0], countryId=item[1])
t.add(pie, "{}".format(item[0]))
return t
绘制图形标头Title
def title_plot():
title = (
Pie(init_opts=opts.InitOpts(chart_id=1))
.set_global_opts(
title_opts=opts.TitleOpts(title="2020东京奥运会奖牌榜分析",
title_textstyle_opts=opts.TextStyleOpts(font_size=36, color='#000000'),
pos_left='center',
pos_top='middle'))
)
return title
页面布局Page
def page():
page = Page(layout=Page.DraggablePageLayout, page_title="2020东京奥运会奖牌榜")
page.add(
title_plot(),
wmap_plot(datas=df02),
bar_plot(datas=df02),
tpie(data01=df02, data02=df03)
)
return page
# page.render('2020东京奥运会奖牌榜-test.html')
# page.save_resize_html(source='2020东京奥运会奖牌榜-test.html',
# cfg_file='chart_config2.json',
# dest='2020东京奥运会奖牌榜.html'
# )

2020东京奥运会奖牌榜可视化分析(Pyechart)的更多相关文章
- 【Python可视化】使用Pyecharts进行奥运会可视化分析~
项目全部代码 & 数据集都可以访问我的KLab --[Pyecharts]奥运会数据集可视化分析-获取,点击Fork即可- 受疫情影响,2020东京奥运会将延期至2021年举行: 虽然延期,但 ...
- 用Python爬取《王者荣耀》英雄皮肤数据并可视化分析,用图说话
大家好,我是辰哥~ 今天辰哥带大家分析一波当前热门手游<王者荣耀>英雄皮肤,比如皮肤上线时间.皮肤类型(勇者:史诗:传说等).价格. 1.获取数据 数据来源于<王者荣耀官方网站> ...
- 这个数据分析工具秒杀Excel,可视化分析神器!
入门Excel容易,想要精通就很难了,大部分人通过学习能掌握60%的基础操作,但是一些复杂数据可视化分析就需要用到各种技巧,操作理解难度加深 Excel作为一直是使用最广泛的数据表格工具,在数据量日 ...
- JAVA 可视化分析工具 第12节
JAVA 可视化分析工具 第12节 经过前几章对堆内存以及垃圾收集机制的学习,相信小伙伴们已经建立了一套比较完整的理论体系!那么这章我们就根据已有的理论知识,通过可视化工具来实践一番. 我们今天要讲 ...
- 可视化分析工具Cytoscape使用记录
最近项目要使用到可视化分析工具Cytoscape,所以会花费很多的时间跟精力来整理Cytoscape软件使用和开发的相关资料,希望写下的文章能减少有兴趣的同行学习跟开发所走的弯路时间.同时也是因为百度 ...
- 爬虫综合大作业——网易云音乐爬虫 & 数据可视化分析
作业要求来自于https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3075 爬虫综合大作业 选择一个热点或者你感兴趣的主题. 选择爬取的对象 ...
- python3 对拉勾数据进行可视化分析
上回说到我们如何如何把拉勾的数据抓取下来的,既然获取了数据,就别放着不动,把它拿出来分析一下,看看这些数据里面都包含了什么信息.(本次博客源码地址:https://github.com/MaxLyu/ ...
- OneAPM大讲堂 | 监控数据的可视化分析神器 Grafana 的告警实践
文章系国内领先的 ITOM 管理平台供应商 OneAPM 编译呈现. 概览 Grafana 是一个开源的监控数据分析和可视化套件.最常用于对基础设施和应用数据分析的时间序列数据进行可视化分析,也可以用 ...
- 基于Qt的A*算法可视化分析
代码地址如下:http://www.demodashi.com/demo/13677.html 需求 之前做过一个无人车需要自主寻找最佳路径,所以研究了相关的寻路算法,最终选择A算法,因为其简单易懂, ...
- 给Clouderamanager集群里安装可视化分析利器工具Hue步骤(图文详解)
扩展博客 以下,是我在手动的CDH版本,安装Hue. CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主 ...
随机推荐
- DataGear 制作支持表单交互和多图表联动的数据可视化看板
对于数据可视化,有时需要根据用户输入的查询条件展示限定范围的数据图表,DataGear的看板表单功能可以快速方便地实现此类需求. 下面的看板示例,包含一个柱状图.一个饼图和一个地图,用户可以通过看板表 ...
- C/C++ 的 指针/引用 传参
#include <stdio.h> //指针传值 void addOne(int *a) { printf("%8p\n",a); *a = *a+1; } //引用 ...
- spring 注入参数时为list map写法用例
导包基础:这了让服务器支持json 需要导入下面包 <dependency> <groupId>com.alibaba</groupId> <artifact ...
- 2024-03-09:用go语言,我们把无限数量的栈排成一行,按从左到右的次序从 0 开始编号, 每个栈的的最大容量 capacity 都相同。实现一个叫「餐盘」的类 DinnerPlates, Di
2024-03-09:用go语言,我们把无限数量的栈排成一行,按从左到右的次序从 0 开始编号, 每个栈的的最大容量 capacity 都相同.实现一个叫「餐盘」的类 DinnerPlates, Di ...
- [学习笔记]在Linux中使用源码编译的方式安装Nginx
准备工作 准备nginx源码包: http://nginx.org/en/download.html 准备相关的依赖包以及环境: gzip 模块需要 zlib 库 http://www.zlib. ...
- centos7 开机自动执行脚本
1.因为在centos7中/etc/rc.d/rc.local的权限被降低了,所以需要赋予其可执行权 chmod +x /etc/rc.d/rc.local 2.赋予脚本可执行权限假设/usr/loc ...
- 重新认识 tag 快照 git (项目临时添加需求,之前有分支合并,导致从节点拉分支不行了,因为没有tag快照)
之前的tag认知 之前一直以为tag就是在git的提交commit上打一个标,然后可以拉出分支.之前没太重视. 因为我觉得 可以直接从某个commit直接拉出分支,这打不打tag无所谓 翻车现场 今天 ...
- easy-window && aardio 桌面软件开发
https://github.com/lixk/easy-window https://gitee.com/zha2/easy-window https://www.aardio.com/ 桌面软件开 ...
- Java/Kotlin 密码复杂规则校验
原文地址: Java/Kotlin 密码复杂度校验 | Stars-One的杂货小窝 每次有那个密码复杂校验,不会写正则表达式,每次都去搜,但有时候校验的条件又是奇奇怪怪的,百度都搜不到 找到了个代码 ...
- Kotlin/Java 读取Jar文件里的指定文件
原文地址:Kotlin/Java 读取Jar文件里的指定文件 | Stars-One的杂货小窝 jar包本质上也是压缩文件,下面给出如何读取jar包里某个文件的源码: val jarFile = Ja ...