相关链接:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_汀、的博客-CSDN博客

isualDL 是一个面向深度学习任务设计的可视化工具。VisualDL 利用了丰富的图表来展示数据,用户可以更直观、清晰地查看数据的特征与变化趋势,有助于分析数据、及时发现错误,进而改进神经网络模型的设计。

目前,VisualDL 支持 scalar, image, audio, graph, histogram, pr curve, high dimensional 七个组件.

组件名称 展示图表 作用
Scalar 折线图 动态展示损失函数值、准确率等标量数据
Image 图片可视化 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化
Audio 音频播放 播放训练过程中的音频数据,监控语音识别与合成等任务的训练过程
Graph 网络结构 展示网络结构、节点属性及数据流向,辅助学习、优化网络结构
Histogram 直方图 展示训练过程中权重、梯度等张量的分布
PR Curve 折线图 权衡精度与召回率之间的平衡关系,便于选择最佳阈值
High Dimensional 数据降维 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性

1.在训练程序使用添加如下:

from visualdl import LogWriter
#参数记录参考,程序中填写参考这个
"""
def train():
writer=LogWriter("./log/scalar_test")
writer1=LogWriter("./log/scalar_test1") writer.add_scalar(tag="train/loss", step=global_step, value=loss_avg) writer1.add_scalar(tag="train/precision", step=global_step, value=precision)
writer1.add_scalar(tag="train/recall", step=global_step, value=recall)
writer1.add_scalar(tag="train/f1", step=global_step, value=f1) with LogWriter(logdir="paddle_lenet_log/lr0.001") as writer:
# 使用scalar组件记录一个标量数据
if step % 10 == 0:
# add scalar
writer.add_scalar(tag="train/loss", step=step, value=cost)
writer.add_scalar(tag="train/acc", step=step, value=accuracy) """

分别记录loss、F1等指标

2.在本地执行相关指令、多个记录器

添加两个记录器

from visualdl import LogWriter

if __name__ == '__main__':
value = [i/1000.0 for i in range(1000)]
# 初始化一个记录器
with LogWriter(logdir="./log/scalar_test/train") as writer:
for step in range(1000):
# 向记录器添加一个tag为`acc`的数据
writer.add_scalar(tag="acc", step=step, value=value[step])
# 向记录器添加一个tag为`loss`的数据
writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))

终端指令:

#在命令行执行:

visualdl --logdir ./log --port 8080

# 路径:(paddlenlp) C:\Users\admin\Desktop\nlp>visualdl --logdir ./log --port 8080   在log文件夹前执行

add_scalar(tag, value, step, walltime=None)

tag string  记录指标的标志,如train/loss,不能含有%

value   float   要记录的数据值

step    int 记录的步数

walltime    int 记录数据的时间戳,默认为当前时间戳

from visualdl import LogWriter

if __name__ == '__main__':
value = [i/1000.0 for i in range(1000)]
# 步骤一:创建父文件夹:log与子文件夹:scalar_test
with LogWriter(logdir="./log/scalar_test") as writer:
for step in range(1000):
# 步骤二:向记录器添加一个tag为`train/acc`的数据
writer.add_scalar(tag="train/acc", step=step, value=value[step])
# 步骤二:向记录器添加一个tag为`train/loss`的数据
writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
# 步骤一:创建第二个子文件夹scalar_test2
value = [i/500.0 for i in range(1000)]
with LogWriter(logdir="./log/scalar_test2") as writer:
for step in range(1000):
# 步骤二:在同样名为`train/acc`下添加scalar_test2的accuracy的数据
writer.add_scalar(tag="train/acc", step=step, value=value[step])
# 步骤二:在同样名为`train/loss`下添加scalar_test2的loss的数据
writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))

3.PR Curve--PR曲线组件

from visualdl import LogWriter
import numpy as np with LogWriter("./log/pr_curve_test/train") as writer:
for step in range(3):
labels = np.random.randint(2, size=100)
predictions = np.random.rand(100)
writer.add_pr_curve(tag='pr_curve',
labels=labels,
predictions=predictions,
step=step,
num_thresholds=5)

PR Curve以折线图形式呈现精度与召回率的权衡分析,清晰直观了解模型训练效果,便于分析模型是否达到理想标准。

4.High Dimensional--数据降维组件

if __name__ == '__main__':
hot_vectors = [
[1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
[1.1039614644440658, 1.8891609992484688, 1.32030488587171],
[1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
[1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
[1.3913371800587777, 1.4684674577930312, 1.5214136352476377]] labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
# 初始化一个记录器
with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
# 将一组labels和对应的hot_vectors传入记录器进行记录
writer.add_embeddings(tag='default',
labels=labels,
hot_vectors=hot_vectors)

5.HyperParameters--超参可视化组件

from visualdl import LogWriter

# 此demo演示了两次实验的超参数记录,以第一次实验数据为例,首先在`add_hparams`接口中记录
# 超参数`hparams`的数据,再标定了稍后要记录的`metrics`名称,最后通过`add_scalar`再具体
# 记录`metrics`的数据。此处需注意`add_hparams`接口中的`metrics_list`参数需要包含`add_scalar`
# 接口的`tag`参数。
if __name__ == '__main__':
# 记录第一次实验数据
with LogWriter('./log/hparams_test/train/run1') as writer:
# 记录hparams数值和metrics名称
writer.add_hparams(hparams_dict={'lr': 0.1, 'bsize': 1, 'opt': 'sgd'},
metrics_list=['hparam/accuracy', 'hparam/loss'])
# 通过将add_scalar接口中的tag与metrics名称对应,记录一次实验中不同step的metrics数值
for i in range(10):
writer.add_scalar(tag='hparam/accuracy', value=i, step=i)
writer.add_scalar(tag='hparam/loss', value=2*i, step=i) # 记录第二次实验数据
with LogWriter('./log/hparams_test/train/run2') as writer:
# 记录hparams数值和metrics名称
writer.add_hparams(hparams_dict={'lr': 0.2, 'bsize': 2, 'opt': 'relu'},
metrics_list=['hparam/accuracy', 'hparam/loss'])
# 通过将add_scalar接口中的tag与metrics名称对应,记录一次实验中不同step的metrics数值
for i in range(10):
writer.add_scalar(tag='hparam/accuracy', value=1.0/(i+1), step=i)
writer.add_scalar(tag='hparam/loss', value=5*i, step=i)

paddle之visualDL工具使用,可视化利器。的更多相关文章

  1. 大数据时代的图表可视化利器——highcharts,D3和百度的echarts

    大数据时代的图表可视化利器——highcharts,D3和百度的echarts https://blog.csdn.net/minidrupal/article/details/42153941   ...

  2. 可视化利器Visdom

    可视化利器Visdom 最近在使用Pytorch炼丹,单纯地看命令行输出已经无法满足调试的需求,尝试了facebook开源的visdom,感觉非常优雅,支持numpy和torch 安装 $ pip i ...

  3. 【可视化】DataV接入ECharts图表库 可视化利器强强联手

    DataV接入ECharts图表库 可视化利器强强联手 摘要: 两个扛把子级产品的结合,而且文末有彩蛋. DataV 数据可视化是搭建每年天猫双十一作战大屏的幕后功臣,ECharts 是广受数据可视化 ...

  4. 【python可视化系列】python数据可视化利器--pyecharts

    学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...

  5. [工具.tfs]可视化的TFS命令工具——Team Foundation Sidekicks

    工具介绍:http://www.attrice.info/cm/tfs/index.htm Team Foundation Sidekicks is a suite of tools for Micr ...

  6. NuGet命令行工具和可视化工具

    Nuget出了命令行工具之外,还有一个可视化工具,下载地址如下: 命令行(推荐官网下载,有中文提示!):https://dist.nuget.org/index.html 可视化(简单.方便.易用): ...

  7. 剖析管理所有大数据组件的可视化利器:Hue

    日常的大数据使用都是在服务器命令行中进行的,可视化功能仅仅依靠各个组件自带的web界面来实现,不同组件对应不同的端口号,如:HDFS(50070),Yarn(8088),Hbase(16010)等等, ...

  8. Shader 学习工具篇 可视化公式工具ZGrapher

    大家好,我是怒风,本篇介绍公式可视化公式工具ZGrapher,尝试通过可视化的方式分析一下Shader中应用的公式,以求帮助初学者快速理解Shader编程中的一些常用公式 本篇的目的两个, 第一,介绍 ...

  9. iOS 测试工具reveal可视化调试工具的使用

    简单翻译一下reveal可视化图形工具插入项目的官方文档(官方英文版file:///Applications/Reveal.app/Contents/SharedSupport/Documentati ...

  10. 数据可视化利器pyechart和matplotlib比较

    python中用作数据可视化的工具有多种,其中matplotlib最为基础.故在工具选择上,图形美观之外,操作方便即上乘. 本文着重说明常见图表用基础版matplotlib和改良版pyecharts作 ...

随机推荐

  1. 机器学习周刊第五期:一个离谱的数据可视化Python库、可交互式动画学概率统计、机器学习最全文档、快速部署机器学习应用的开源项目、Redis 之父的最新文章

    date: 2024/01/08 这个网站用可视化的方式讲解概率和统计基础知识,很多内容还是可交互的,非常生动形象. 大家好,欢迎收看第五期机器学习周刊 本期介绍7个内容,涉及Python.概率统计. ...

  2. Python 基于深度学习的 opencv 车牌识别系统,可以准确识别车牌号

    大家好,我是程序员徐师兄,6 年大厂程序员经验,点击关注我 简介 毕业设计基于Opencv的车牌识别系统 车牌搜索识别找出某个车牌号 对比识别车牌系统 车牌数据库认证系统 车牌图文搜索系统 车牌数据库 ...

  3. COOIS选择屏幕增强

    一.COOIS生产订单抬头选择屏幕添加筛选条件,并将自定义数据添加到报表 二.修改抬头表AUFK,新增自定义字段 三.选择屏幕新增筛选字段 四.函数模块中,将选择屏幕筛选条件抛到内存 五.BADI:W ...

  4. 【库函数】QT 中QString字符串的操作

    QString是QT提供的字符串类,相应的也就提供了很多很方便对字符串的处理方法.这里把这些对字符串的操作做一个整理和总结. 1. 将一个字符串追加到另一个字符串的末尾 QString str1 = ...

  5. SpringBoot 项目实战 | 瑞吉外卖 Day04

    该系列将记录一份完整的实战项目的完成过程,该篇属于第四天 案例来自B站黑马程序员Java项目实战<瑞吉外卖>,请结合课程资料阅读以下内容 该篇我们将完成以下内容: 文件上传下载 新增菜品 ...

  6. Codeforces Round #656 (Div. 3)部分题解

    Codeforces Round #656 (Div. 3)题解 A.Three Pairwise Maximums 解题思路: 依照题意和样例,三个整数x,y,z必须有两个相同且都比第三个数大. 如 ...

  7. SpringCloud学习 系列三、 创建一个没有使用springCloud的服务提供者和消费者

    系列导航 SpringCloud学习 系列一. 前言-为什么要学习微服务 SpringCloud学习 系列二. 简介 SpringCloud学习 系列三. 创建一个没有使用springCloud的服务 ...

  8. window对象的常见事件

    2.1 窗口加载事件 window.onload = function() { } 或者 window.addEventListener("load", function(){}) ...

  9. C#对字符串进行加密解密

    首先上效果图 加解密接口 internal string ToEncrypt(string encryptKey, string str) { try { byte[] P_byte_key = // ...

  10. Mybatis @Insert插入数据返回自增的主键id

    mapper层 @Insert("insert into t_user (username,password,valid,create_time) values (#{username},# ...