1.矩阵的分割

方法:split(分割长度,所分割的维度)split([分割所占的百分比],所分割的维度)
a=torch.rand(32,8)
aa,bb=a.split(16,dim=0)
print(aa.shape)
print(bb.shape)
cc,dd=a.split([20,12],dim=0)
print(cc.shape)
print(dd.shape)

输出结果

torch.Size([16, 8])
torch.Size([16, 8])
torch.Size([20, 8])
torch.Size([12, 8])

2.tensor的属性统计

min(dim=1):返回第一维的所有最小值,以及下标
max(dim=1):返回第一维的所有最大值,以及下标
a=torch.rand(4,3)
print(a,'\n')
print(a.min(dim=1),'\n')
print(a.max(dim=1))

输出结果

tensor([[0.3876, 0.5638, 0.5768],
[0.7615, 0.9885, 0.9660],
[0.3622, 0.4334, 0.1226],
[0.9390, 0.6292, 0.8370]]) torch.return_types.min(
values=tensor([0.3876, 0.7615, 0.1226, 0.6292]),
indices=tensor([0, 0, 2, 1])) torch.return_types.max(
values=tensor([0.5768, 0.9885, 0.4334, 0.9390]),
indices=tensor([2, 1, 1, 0]))
mean:求平均值
prod:求累乘
sum:求累加
argmin:求最小值下标
argmax:求最大值下标
a=torch.rand(1,3)
print(a)
print(a.mean())
print(a.prod())
print(a.sum())
print(a.argmin())
print(a.argmax())

输出结果

tensor([[0.5366, 0.9145, 0.0606]])
tensor(0.5039)
tensor(0.0297)
tensor(1.5117)
tensor(2)
tensor(1)

3.tensor的topk()和kthvalue()

topk(k,dim=a,largest=):输出维度为1的前k大的值,以及它们的下标。
kthvalue(k,dim=a):输出维度为a的第k小的值,并输出它的下标。
a=torch.rand(4,4)
print(a,'\n')
# 输出每一行中2个最大的值,并输出它们的下标
print(a.topk(2,dim=1),'\n') # 输出每一行中3个最小的值,并输出它们的下标
print(a.topk(3,dim=1,largest=False),'\n') # 输出每一行第2小的值,并输出下标
print(a.kthvalue(2,dim=1))

输出结果

tensor([[0.7131, 0.8148, 0.8036, 0.4720],
[0.9135, 0.4639, 0.5114, 0.2277],
[0.1314, 0.8407, 0.7990, 0.9426],
[0.6556, 0.7316, 0.9648, 0.9223]]) torch.return_types.topk(
values=tensor([[0.8148, 0.8036],
[0.9135, 0.5114],
[0.9426, 0.8407],
[0.9648, 0.9223]]),
indices=tensor([[1, 2],
[0, 2],
[3, 1],
[2, 3]])) torch.return_types.topk(
values=tensor([[0.4720, 0.7131, 0.8036],
[0.2277, 0.4639, 0.5114],
[0.1314, 0.7990, 0.8407],
[0.6556, 0.7316, 0.9223]]),
indices=tensor([[3, 0, 2],
[3, 1, 2],
[0, 2, 1],
[0, 1, 3]])) torch.return_types.kthvalue(
values=tensor([0.7131, 0.4639, 0.7990, 0.7316]),
indices=tensor([0, 1, 2, 1]))

Pytorch-tensor的分割,属性统计的更多相关文章

  1. pytorch中检测分割模型中图像预处理探究

    Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检 ...

  2. Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor, ...

  3. awk将某个字段按照分隔符分割之后统计次数

    cat label_movie2|grep BBD252CC0A4FE7D10C990261D5CEACB5|awk -F "," '{for(i=2;i<NF;i++) p ...

  4. C++学习笔记(一)——一个字符串分割和统计的工具(TextUtils)

    第一讲先从一个实例开始——我们需要完成一个遍历文件并统计单词出现次数的任务.分解功能:首先,按行读取文件并舍弃可能的空行.其次,将每一行都按照空格划分单词.因为可能存在标点符号,我们还需要将标点符号都 ...

  5. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  6. Pytorch Tensor 维度的扩充和压缩

    维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置 ...

  7. pytorch tensor与numpy转换

    从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) ...

  8. pytorch tensor 维度理解.md

    torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数 ...

  9. pytorch tensor的索引与切片

    切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1 ...

  10. PyTorch基础(Numpy & Tensor)

    Numpy与Tensor是PyTorch的重要内容 Numpy的使用 Numpy是Python中科学计算的一个基础包,提供了一个多维度的数组对象,数组是由numpy.ndarray类来实现的,是Num ...

随机推荐

  1. 机器学习从入门到放弃:卷积神经网络CNN(二)

    一.前言 通过上一篇文章,我们大概了解了卷积是什么,并且分析了为什么卷积能在图像识别上起到巨大的作用.接下来,废话不多话,我们自己尝试动手搭建一个简易的CNN网络. 二.准备工作 在开始的时候,我们首 ...

  2. SQL执行一次完成新增或者修改操作-2022新项目

    一.业务场景 当前项目中数据库使用的postgresql,pgsql有很多的优点,比如开源免费,适合二次开发.pgsql有很多搭配使用的开源软件,比较易于拓展,语法和标准的SQL语法基本上差异不大.因 ...

  3. TR069-STUN

    原理 1.NAT穿越技术,为了解决NAT设备对P2P网络的通信限制   2.作用:检测网络中是否存在NAT设备,并获取两个通信端点经NAT设备分配的IP地址和端口号,然后建立一条可穿越NAT的P2P链 ...

  4. B站Aimls的JavaFx教程目录合集

    B站里有时候不太好去找资源,用JS爬了下,整出标题和链接,方便后续查询某个知识点的使用! JavaFX视频教程第1课,hello world JavaFX视频教程第2课,application的启动方 ...

  5. CC++ 如何确定一个变量的类型(恶心的指针)

    如何确定一个变量的类型 目录 如何确定一个变量的类型 1.如果一个变量声明中没有括号 2.变量声明中有括号 3.检测一下(逐渐变态··· 4.总结 1.如果一个变量声明中没有括号 如果一个变量声明中没 ...

  6. Android富文本开发

    基础概念目录介绍 01.业务需求简单介绍 02.实现的方案介绍 03.异常状态下保存状态信息 04.处理软键盘回删按钮逻辑 05.在指定位置插入图片 06.在指定位置插入输入文字 07.如果对选中文字 ...

  7. .Net 8.0 除gRPC之外的另一个选择,IceRPC之快束开始HelloWorld

    作者引言 很高兴啊,我们来到了第一篇,程序员的HelloWorld,快速开始RPC之游 快速入门 演示如何在几分钟内,使用IceRPC,构建和运行一个完整的客户端-服务器(C/S)应用程序. 必要条件 ...

  8. 记录--vue3中的ref,toRef,toRefs

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 1. ref的使用 ref 接受一个原始值,返回一个具有响应式的对象,对象有一个value属性,其值就是所传递的原始值. ref是做的一个 ...

  9. 记录--千万别让 console.log 上生产!用 Performance 和 Memory 告诉你为什么

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 很多前端都喜欢用 console.log 调试,先不谈调试效率怎么样,首先 console.log 有个致命的问题:会导致内存泄漏. 为什 ...

  10. sklearn库主要模块功能简介

    1.sklearn库简介 sklearn,全称scikit-learn,是python中的机器学习库,建立在numpy.scipy.matplotlib等数据科学包的基础之上,涵盖了机器学习中的样例数 ...