#贪心,树#C 平衡的树

分析
处理出子树内剩余删减以及最大的剩余\(a\)和,
如果删了还是超过\(b\)输出无解
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=200011; typedef long long lll; struct rec{lll wt,ws;};
lll ans; int as[N],n,et,flag; struct node{int y,w1,w2,next;}e[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
rec dfs(int x){
rr lll wt=0,ws=0;
for (rr int i=as[x];i;i=e[i].next){
if (flag) return (rec){wt,ws};
rr rec t=dfs(e[i].y);
if (t.ws-t.wt>e[i].w2){flag=1; return (rec){wt,ws};}
if (t.ws>e[i].w2) t.wt-=t.ws-e[i].w2,ans+=t.ws-e[i].w2,t.ws=e[i].w2;
wt+=t.wt+(e[i].w1<e[i].w2?e[i].w1:e[i].w2),ws+=e[i].w1+t.ws;
}
return (rec){wt,ws};
}
signed main(){
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
n=iut();
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut(),w1=iut(),w2=iut();
e[++et]=(node){y,w1,w2,as[x]},as[x]=et;
}
dfs(1);
if (flag) printf("-1");
else printf("%lld",ans);
return 0;
}
#贪心,树#C 平衡的树的更多相关文章
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- AVL树的平衡算法(JAVA实现)
1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近 ...
- 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种 ...
- 转 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为"在计算机科学中,B树(B-tre ...
- 二叉平衡查找树AvlTree(C实现)
二叉平衡查找树即是一棵树中所有节点的左右子树高度差不超过1的查找树 头文件—————————————————————————————— #ifndef _AVLTREE_H_ #define _AVL ...
- AVL树(平衡二叉查找树)
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转
前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...
- 树的平衡之AVL树——错过文末你会后悔,信我
学习数据结构应该是一个循序渐进的过程: 当我们学习数组时,我们要体会数组的优点:仅仅通过下标就可以访问我们要找的元素(便于查找). 此时,我们思考:假如我要在第一个元素前插入一个新元素?采用数组需要挪 ...
- 数据结构---平衡查找树之B树和B+树(转)
本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...
随机推荐
- 【LeetCode字符串#04】左旋转字符串,以及反转函数使用说明
左旋转字符串 力扣题目链接(opens new window) 字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部.请定义一个函数实现字符串左旋转操作的功能.比如,输入字符串"a ...
- 【LeetCode字符串#01】反转字符串I+II
反转字符串 力扣题目链接(opens new window) 编写一个函数,其作用是将输入的字符串反转过来.输入字符串以字符数组 char[] 的形式给出. 不要给另外的数组分配额外的空间,你必须原地 ...
- 第一百一十八篇: JavaScript 原型链式继承
好家伙,好家伙,本篇为<JS高级程序设计>第八章"对象.类与面向对象编程"学习笔记 1.原型链 原型链是JS实现"继承"的方案之一 ECMA-262 ...
- Spring-Cloud集成redis-cluster
前言 系统之前接入的是单点redis,为了条系统高可用能力,特增加集成redis-cluster集群的步骤 依赖库引入 <dependency> <groupId>org.sp ...
- 揭秘可视化图探索工具 NebulaGraph Explore 是如何实现图计算的
前言 在可视化图探索工具 NebulaGraph Explorer 3.1.0 版本中加入了图计算工作流功能,针对 NebulaGraph 提供了图计算的能力,同时可以利用工作流的 nGQL 运行能力 ...
- Java 方法的重载(overload)
1 /* 2 * 3 * 方法的重载(overload) 4 * 1.定义:在同一个类中,允许存在一个以上的同名方法,只要他们的参数个数或者参数类型不同 5 * 6 * "两同一不同&quo ...
- C++ //常用算法 binary_serach //查找指定的元素 //无序序列中不可用
1 //常用算法 binary_serach 2 //查找指定的元素 3 //无序序列中不可用 4 5 6 #include<iostream> 7 #include<algorit ...
- C++ //类模板分文件编写问题及解决 //第一中解决方式 直接包含源文件 //第二种解决方法 将.h 和 cpp的内容写到一起,将后缀改为.hpp文件
1 //第一种方式被注释 2 //未被注释是第二种方式 3 //类模板分文件编写问题及解决 4 5 6 #include <iostream> 7 #include <string& ...
- 学习笔记-涛讲F#(基础)
目录 简介 类型推导 多个输入参数的函数 定义单位 偏函数 常量也是函数 返回值(unit与ignore) 函数串联实现"开方乘十" 使用管道符 |> 元组(参数加上括号) ...
- stm32 使用多串口通信调试总结
前记: stm32使用多个串口通信,这个项目遇到了不少问题,值得反思和深入总结一下. 提纲: 这次的问题,主要有几个部分组成: A 多串口的DMA配置,这个需要注意,尽量不要使用同一个DMA ...