CosyVoice多语言、音色和情感控制模型,one-shot零样本语音克隆模型本地部署(Win/Mac),通义实验室开源

近日,阿里通义实验室开源了CosyVoice语音模型,它支持自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。
CosyVoice采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。
CosyVoice支持one-shot音色克隆 :仅需要3~10s的原始音频,即可生成模拟音色,甚至包括韵律、情感等细节。在跨语种的语音合成中,也有不俗的表现。
由于官方的版本暂不支持Windows和Mac平台,本次我们分别在这两个平台本地部署CosyVoice。
Windows平台
首先来到windows平台,克隆项目:
git clone https://github.com/v3ucn/CosyVoice_For_Windows
进入项目:
cd CosyVoice_For_Windows
生成内置模块:
git submodule update --init --recursive
随后安装依赖:
conda create -n cosyvoice python=3.11
conda activate cosyvoice
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
官方推荐的Python版本是3.8,实际上3.11也是可以跑起来的,并且理论上3.11的性能更好。
随后下载deepspeed的windows版本安装包来进行安装:
https://github.com/S95Sedan/Deepspeed-Windows/releases/tag/v14.0%2Bpy311
最后,安装gpu版本的torch:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
这里cuda的版本选择12,也可以安装11的。
随后下载模型:
# git模型下载,请确保已安装git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/speech_tts/speech_kantts_ttsfrd.git pretrained_models/speech_kantts_ttsfrd
由于使用国内的魔搭仓库,所以速度非常快
最后添加环境变量:
set PYTHONPATH=third_party/AcademiCodec;third_party/Matcha-TTS
基础用法:
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudio
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-SFT')
# sft usage
print(cosyvoice.list_avaliable_spks())
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
torchaudio.save('sft.wav', output['tts_speech'], 22050)
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M')
# zero_shot usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-Instruct')
# instruct usage
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
torchaudio.save('instruct.wav', output['tts_speech'], 22050)
这里推荐使用webui,更加直观和方便:
python3 webui.py --port 9886 --model_dir ./pretrained_models/CosyVoice-300M

需要注意的是,官方的torch的backend使用的是sox,这里改成了soundfile:
torchaudio.set_audio_backend('soundfile')
可能会有一些bug,后续还请关注官方的项目更新。
MacOS平台
现在来到MacOs平台,还是先克隆项目:
git clone https://github.com/v3ucn/CosyVoice_for_MacOs.git
安装依赖:
cd CosyVoice_for_MacOs
conda create -n cosyvoice python=3.8
conda activate cosyvoice
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
随后需要通过Homebrew安装sox:
brew install sox
如此就配置好了,但是别忘了添加环境变量:
export PYTHONPATH=third_party/AcademiCodec:third_party/Matcha-TTS
使用方式和Windows版本保持一致。
这里还是推荐使用webui:
python3 webui.py --port 50000 --model_dir speech_tts/CosyVoice-300M

结语
平心而论,CosyVoice不愧是大厂出品,模型的品质没的说,代表了国内AI的最高水准,通义实验室名下无虚,当然,如果能将工程化之后的代码也开源出来,那就更好了,相信经过libtorch的优化,这个模型将会是开源TTS的不二选择。
CosyVoice多语言、音色和情感控制模型,one-shot零样本语音克隆模型本地部署(Win/Mac),通义实验室开源的更多相关文章
- C语言的printf输出格式控制
C语言的printf输出格式控制 printf大家都耳熟能详,但是能真正将其用法弄透的估计很少见. 转一篇,改天整理. 1.转换说明符 %a(%A) 浮点数.十六进制数字和p-(P-)记数法( ...
- R语言︱词典型情感分析文本操作技巧汇总(打标签、词典与数据匹配等)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要 ...
- Go语言基础之流程控制
Go语言基础之流程控制 流程控制是每种编程语言控制逻辑走向和执行次序的重要部分,流程控制可以说是一门语言的“经脉”. Go语言中最常用额流程控制有if和for,而switch和goto主要是为了简化代 ...
- Go语言 数据类型,流程控制
Go语言 数据类型,流程控制 人生苦短,Let's Go ! package main // 必须要有一个main包 import "fmt" func main() { fmt. ...
- GO语言学习——Go语言基础之流程控制一
Go语言基础之流程控制 if else(分支结构) package main import "fmt" // if条件判断 func main(){ // age := 19 // ...
- I/O模型之四:Java 浅析I/O模型(BIO、NIO、AIO、Reactor、Proactor)
目录: <I/O模型之一:Unix的五种I/O模型> <I/O模型之二:Linux IO模式及 select.poll.epoll详解> <I/O模型之三:两种高性能 I ...
- AAAI 2020论文分享:通过识别和翻译交互打造更优的语音翻译模型
2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Spe ...
- [iTyran原创]iPhone中OpenGL ES显示3DS MAX模型之二:lib3ds加载模型
[iTyran原创]iPhone中OpenGL ES显示3DS MAX模型之二:lib3ds加载模型 作者:u0u0 - iTyran 在上一节中,我们分析了OBJ格式.OBJ格式优点是文本形式,可读 ...
- 小技巧 EntityFrameworkCore 实现 CodeFirst 通过模型生成数据库表时自动携带模型及字段注释信息
今天分享自己在项目中用到的一个小技巧,就是使用 EntityFrameworkCore 时我们在通过代码去 Update-Database 生成数据库时如何自动将代码模型上的注释和字段上的注释携带到数 ...
- 零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程. 1.通用文本分类技术UTC介绍 本项目提供基于通用文本分类 UTC(Universal Text C ...
随机推荐
- C语言简答题
C语言的历史: c语言是在20世纪70年代初美国贝尔实验室开发的一种高级编程语言,由B语言发展来,最初是为了Unix操作系统开发的.在80年代中期,由ISO和ANSI C对它进行了一系列的标准化, 9 ...
- fastposter 2.5.0 全新发布 一款电商级海报生成器
fastposter 2.5.0 全新发布 低代码海报生成器 fastposter低代码海报生成器,一分钟完成海报开发.支持Java.Python.PHP. Go.JavaScript等多种语言. v ...
- vue特殊attribute-ref
vue.js中文社区文档:ref 被用来给元素或子组件注册引用信息.引用信息将会注册在父组件的 $refs 对象上.如果在普通的 DOM 元素上使用,引用指向的就是 DOM 元素:如果用在子组件上,引 ...
- Paimon的写入流程
基于Paimon 0.5版本 写入流程的构建org.apache.paimon.flink.sink.FlinkSinkBuilder#build 算子的流向 BucketingStreamParti ...
- 数据库—ER模型概念设计
文章目录 ER模型的概念 如何画ER图 ER图转换为关系数据库 ER模型的概念 实体 画图时用方形表示 属性 用椭圆形表示 关系 用菱形表示 主键(主码) 在主属性下面画划线 外键(外码) 这里一般是 ...
- vmware迁移虚拟机
迁移 1.打开"VMware",点击"虚拟机详细信息"可以看到虚拟机的储存路径. 2. 按照储存路径找到虚拟机文件位置,将整个虚拟机文件复制,粘贴到需要转移的路 ...
- MyBatis日志模块源码分析
MyBatis源码的logging包下是日志模块的相关实现,Mybatis日志模块通过适配器模式和代理模式优雅的实现了SQL日志的输出功能. 一. 适配器模式实现了MyBatis对第三方日志框架的适配 ...
- protoc-gen-go: error:inconsistent package names: , prototest
如果你已经安装proto ,以及go生成proto插件.但还是报这种错误,请看一下是否 protoc --go_out=./ *.proto 指令打错了
- .net C# System.Text.Json 如何将 string类型的“true”转换为布尔值 解决方案
直接上解决方法的代码 先定义一个转换顺,代码如下: public sealed class AnhBoolConverter : JsonConverter<bool?> { public ...
- linux使用过程中遇到的常见问题
1 xxxx is not in the sudoers file. This incident will be reported. 解决方式:https://www.cnblogs.com/xym4 ...