基于cifar数据集合成含开集、闭集噪声的数据集
前言
噪声标签学习下的一个任务是:训练集上存在开集噪声和闭集噪声;然后在测试集上对闭集样本进行分类。
训练集中被加入的开集样本,会被均匀得打上闭集样本的标签充当开集噪声;而闭集噪声的设置与一般的噪声标签学习一致,分为对称噪声:随机将闭集样本的标签替换为其他类别;和非对称噪声:将闭集样本的标签替换为特定的类别。
论文实验中,常用cifar数据集模拟这类任务。目前已知有两类方法:
第一类基于cifar100,将100个类的一部分,通常是20个类作为开集样本,将它们标签替换了前80个类作为开集噪声;然后对于后续80个类,选择部分样本设置为对称/非对称闭集噪声。CVPR2022的PNP: Robust Learning From Noisy Labels by Probabilistic Noise Prediction提供的代码中,使用了这种方法。但是,如果要考虑非对称噪声,在cifar10上就很难实现,cifar10的类的顺序不像cifar100那样有规律,不好设置闭集噪声。
第二类方法适用cifar10和cifar100,保持原始数据集的样本数不变,使用额外的数据集(通常是imagenet32、places365)代替部分样本作为开集噪声,对于剩下的非开集噪声样本再设置闭集噪声。ECCV2022的Embedding contrastive unsupervised features to cluster in-and out-of-distribution noise in corrupted image datasets提供的代码使用了这种方式。
places365可以使用torchvision.datasets.Places365下载,由于训练集较大,通常是用它的验证集作为辅助数据集。
imagenet32是imagnet的32x32版本,同样是1k类,但是类的具体含义的顺序与imagenet不同,imagenet32类的具体含义可见这里。image32下载地址在对应论文A downsampled variant of imagenet as an alternative to the cifar datasets提供的链接。
接下来是用第二种方法,辅助数据集使用imagenet32,基于cifar构造含开集闭集噪声的训练集。
实验
设计imagenet32数据集
import os
import pickle
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
_train_list = ['train_data_batch_1',
'train_data_batch_2',
'train_data_batch_3',
'train_data_batch_4',
'train_data_batch_5',
'train_data_batch_6',
'train_data_batch_7',
'train_data_batch_8',
'train_data_batch_9',
'train_data_batch_10']
_val_list = ['val_data']
def get_dataset(transform_train, transform_test):
# prepare datasets
# Train set
train = Imagenet32(train=True, transform=transform_train) # Load all 1000 classes in memory
# Test set
test = Imagenet32(train=False, transform=transform_test) # Load all 1000 test classes in memory
return train, test
class Imagenet32(Dataset):
def __init__(self, root='~/data/imagenet32', train=True, transform=None):
if root[0] == '~':
root = os.path.expanduser(root)
self.transform = transform
size = 32
# Now load the picked numpy arrays
if train:
data, labels = [], []
for f in _train_list:
file = os.path.join(root, f)
with open(file, 'rb') as fo:
entry = pickle.load(fo, encoding='latin1')
data.append(entry['data'])
labels += entry['labels']
data = np.concatenate(data)
else:
f = _val_list[0]
file = os.path.join(root, f)
with open(file, 'rb') as fo:
entry = pickle.load(fo, encoding='latin1')
data = entry['data']
labels = entry['labels']
data = data.reshape((-1, 3, size, size))
self.data = data.transpose((0, 2, 3, 1)) # Convert to HWC
labels = np.array(labels) - 1
self.labels = labels.tolist()
def __getitem__(self, index):
img, target = self.data[index], self.labels[index]
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
return img, target, index
def __len__(self):
return len(self.data)
目录结构:
imagenet32
├─ train_data_batch_1
├─ train_data_batch_10
├─ train_data_batch_2
├─ train_data_batch_3
├─ train_data_batch_4
├─ train_data_batch_5
├─ train_data_batch_6
├─ train_data_batch_7
├─ train_data_batch_8
├─ train_data_batch_9
└─ val_data
设计cifar数据集
import torchvision
import numpy as np
from dataset.imagenet32 import Imagenet32
class CIFAR10(torchvision.datasets.CIFAR10):
def __init__(self, root='~/data', train=True, transform=None,
r_ood=0.2, r_id=0.2, seed=0, corruption='imagenet', ):
nb_classes = 10
self.nb_classes = nb_classes
super().__init__(root, train=train, transform=transform)
if train is False:
return
np.random.seed(seed)
if r_ood > 0.:
ids_ood = [i for i in range(len(self.targets)) if np.random.random() < r_ood]
if corruption == 'imagenet':
imagenet32 = Imagenet32(root='~/data/imagenet32', train=True)
img_ood = imagenet32.data[np.random.permutation(range(len(imagenet32)))[:len(ids_ood)]]
else:
raise ValueError(f'Unknown corruption: {corruption}')
self.ids_ood = ids_ood
self.data[ids_ood] = img_ood
if r_id > 0.:
ids_not_ood = [i for i in range(len(self.targets)) if i not in ids_ood]
ids_id = [i for i in ids_not_ood if np.random.random() < (r_id / (1 - r_ood))]
for i, t in enumerate(self.targets):
if i in ids_id:
self.targets[i] = int(np.random.random() * nb_classes)
self.ids_id = ids_id
class CIFAR100(torchvision.datasets.CIFAR100):
def __init__(self, root='~/data', train=True, transform=None,
r_ood=0.2, r_id=0.2, seed=0, corruption='imagenet', ):
nb_classes = 100
self.nb_classes = nb_classes
super().__init__(root, train=train, transform=transform)
if train is False:
return
np.random.seed(seed)
if r_ood > 0.:
ids_ood = [i for i in range(len(self.targets)) if np.random.random() < r_ood]
if corruption == 'imagenet':
imagenet32 = Imagenet32(root='~/data/imagenet32', train=True)
img_ood = imagenet32.data[np.random.permutation(range(len(imagenet32)))[:len(ids_ood)]]
else:
raise ValueError(f'Unknown corruption: {corruption}')
self.ids_ood = ids_ood
self.data[ids_ood] = img_ood
if r_id > 0.:
ids_not_ood = [i for i in range(len(self.targets)) if i not in ids_ood]
ids_id = [i for i in ids_not_ood if np.random.random() < (r_id / (1 - r_ood))]
for i, t in enumerate(self.targets):
if i in ids_id:
self.targets[i] = int(np.random.random() * nb_classes)
self.ids_id = ids_id
查看统计结果
import pandas as pd
import altair as alt
from dataset.cifar import CIFAR10, CIFAR100
# Initialize CIFAR10 dataset
cifar10 = CIFAR10(r_imb=0.)
cifar100 = CIFAR100(r_imb=0.)
def statistics_samples(dataset):
ids_ood = dataset.ids_ood
ids_id = dataset.ids_id
# Collect statistics
statistics = []
for i in range(dataset.nb_classes):
statistics.append({
'class': i,
'id': 0,
'ood': 0,
'clear': 0
})
for i, t in enumerate(dataset.targets):
if i in ids_ood:
statistics[t]['ood'] += 1
elif i in ids_id:
statistics[t]['id'] += 1
else:
statistics[t]['clear'] += 1
df = pd.DataFrame(statistics)
# Melt the DataFrame for Altair
df_melt = df.melt(id_vars='class', var_name='type', value_name='count')
# Create the bar chart
chart = alt.Chart(df_melt).mark_bar().encode(
x=alt.X('class:O', title='Classes'),
y=alt.Y('count:Q', title='Sample Count'),
color='type:N'
)
return chart
chart1 = statistics_samples(cifar10)
chart2 = statistics_samples(cifar100)
chart1 = chart1.properties(
title='cifar10',
width=100, # Adjust width to fit both charts side by side
height=400
)
chart2 = chart2.properties(
title='cifar100',
width=800,
height=400
)
combined_chart = alt.hconcat(chart1, chart2).configure_axis(
labelFontSize=12,
titleFontSize=14
).configure_legend(
titleFontSize=14,
labelFontSize=12
)
combined_chart
运行环境
# Name Version Build Channel
altair 5.3.0 pypi_0 pypi
pytorch 2.3.1 py3.12_cuda12.1_cudnn8_0 pytorch
pandas 2.2.2 pypi_0 pypi
基于cifar数据集合成含开集、闭集噪声的数据集的更多相关文章
- 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集
机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集 选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...
- R_Studio(决策树算法)鸢尾花卉数据集Iris是一类多重变量分析的数据集【精】
鸢尾花卉数据集Iris是一类多重变量分析的数据集 通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类 针对 ...
- 基于用户的最近邻协同过滤算法(MovieLens数据集)
基于用户的最近邻算法(User-Based Neighbor Algorithms),是一种非概率性的协同过滤算法,也是推荐系统中最最古老,最著名的算法. 我们称那些兴趣相似的用户为邻居,如果用户 ...
- java 实现基于opencv全景图合成
因项目需要,自己做了demo,从中学习很多,所以分享出来,希望有这方面需求的少走一些弯路,opencv怎么安装网上教程多多,这里不加详细说明,我安装的opencv-3.3.0 如上图所示,找到相应的j ...
- Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存
用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1 ...
- pyTorch 基于以resnet50为backbone的PSPNet 训练VOC2012数据集
代码链接:https://github.com/ggyyzm/pytorch_segmentation 使用PSPNet作为主干分类网络 1.将VOC2012数据集下载并解压到data/VOCtrai ...
- MyBatis操作指南-搭建项目基础环境(基于Java API)含log4j2配置
- 基于tensorflow的bilstm_crf的命名实体识别(数据集是msra命名实体识别数据集)
github地址:https://github.com/taishan1994/tensorflow-bilstm-crf 1.熟悉数据 msra数据集总共有三个文件: train.txt:部分数据 ...
- Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集
本文将从以下三个方面介绍如何制作自己的数据集 数据标注 数据扩增 将数据转化为COCO的json格式 参考资料 一.数据标注 在深度学习的目标检测任务中,首先要使用训练集进行模型训练.训练的数据集好坏 ...
- cifar数据集介绍及到图像转换的实现
CIFAR是一个用于普通物体识别的数据集.CIFAR数据集分为两种:CIFAR-10和CIFAR-100.The CIFAR-10 and CIFAR-100 are labeled subsets ...
随机推荐
- Java ”框架 = 注解 + 反射 + 设计模式“ 之 反射详解
Java "框架 = 注解 + 反射 + 设计模式" 之 反射详解 每博一文案 无论幸福还是苦难,无论光荣还是屈辱,你都要自己遭遇与承受. ------ <平凡的世界> ...
- blazor中的PageTitle输出keywords和description,自定义组件
在blazor的PageTitle中不具备输出keywords和description的功能,而如果直接使用<mate>标签,输出中文时会变成乱码,所以我给大家推介下面的代码解君愁: 1 ...
- PLC输出指令频率F计算
本文章为学习记录,水平有限,望各路大佬们轻喷!!! 转载请注明出处!!!
- Java工具类库大总结
1. Java自带工具方法 1.1 List集合拼接成以逗号分隔的字符串 // 如何把list集合拼接成以逗号分隔的字符串 a,b,c List<String> list = Arrays ...
- ES 2024 新特性
ECMAScript 2024 新特性 ECMAScript 2024, the 15th edition, added facilities for resizing and transferrin ...
- 网络安全—部署CA证书服务器
文章目录 网络拓扑 安装步骤 安装证书系统 安装从属证书服务器 申请与颁发 申请证书 CA颁发证书 使用windows Server 2003环境 网络拓扑 两台服务器在同一网段即可,即能够互相pin ...
- C语言:使用链式栈检测txt文件中的括号匹配
便捷目录 前言 本程序最终会完成的任务 栈的理解 代码运行过程的解释 说明 ==代码思想 (重要部分)== 全局变量和结构体代码 进栈:创建链表空间函数 出栈:删除链表空间函数 释放申请的链式栈空间 ...
- vue3 如何在 jsx中使用 component 组件
component 组件不像其它的内置组件(tansition.transitionGroup),可以直接从 vue 中直接导出,所有要在 jsx 使用component就要使用 h 函数 使用 vu ...
- 拼接sql 参数化 where userId in(@userIds)的问题
这里@userIds 如果 写成101,202,301翻译后的sql的where部分会是: where userId in('101,202,301'): 而不是期待的: where userId i ...
- ThreadLocal原理详解——终于弄明白了ThreadLocal
目录 概述 API介绍 ThreadLocal的理解 ThreadLocal的原理分析 总结 概述 在java学习生涯中可能很多人都会听到ThreadLocal变量,从字面上理解ThreadLocal ...