题目链接:P3355 骑士共存问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题解:

棋盘问题考虑黑白染色成为二分图后做。

观察马的性质,可知一个点只能到一个异色点,所以,构造方案可以先将所有同色点放上马,再考虑有那些异色点不可以放置。

方法一:

网络流,时间复杂度为O(|E|min(|E|0.5,|V|0.3))

从源点向每个白点连一条限制为1的边(黑色,白色都可以我选定先在白色放满马)(这里的1没有太大的意义,可以理解为每个点一匹马)

从白点向与它不可共存的点,连边,限制为1因为流量最大为1。

从黑点向汇点连一条限制为1的边。

最后答案为n*n-m-ans,表示总点数减去障碍点,再减去冲突的黑点。

#include <bits/stdc++.h>
using namespace std;
const int N=50010;
const int M=500010;
int tot=1,n,m,s,t,nxt[M],go[M],hd[N],dep[N],cur[N],vis[N],jz[M],ans;
queue<int> q;
bool bfs()
{
memset(dep,0,sizeof(dep));
memcpy(cur,hd,sizeof(hd));
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=hd[u];i;i=nxt[i])
{
int v=go[i];
if(!jz[i]||dep[v])continue;
dep[v]=dep[u]+1;
q.push(v);
}
}
return dep[t];
}
int dfs(int u,int flow)
{
if(u==t)return flow;
int out=0;
for(int i=cur[u];i&&flow;i=nxt[i])
{
cur[u]=i;
int v=go[i];
if(jz[i]&&dep[v]==dep[u]+1)
{
int res=dfs(v,min(jz[i],flow));
if(res)
{
jz[i]-=res;jz[i^1]+=res;flow-=res;out+=res;
}
}
}
if(out==0) dep[u]=0;
return out;
}
void add(int u,int v,int w)
{
nxt[++tot]=hd[u];
hd[u]=tot;
go[tot]=v;
jz[tot]=w;
}
int id(int x,int y)
{
return (x-1)*n+y;
}
int xj[10]={2,2,-2,-2,1,1,-1,-1};
int yj[10]={1,-1,1,-1,2,-2,2,-2};
int main()
{
scanf("%d%d",&n,&m);
s=0,t=n*n+1;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
vis[id(x,y)]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
int ids=id(i,j);
if(vis[ids])continue;
if((i+j)%2==0)
{
add(s,ids,1);
add(ids,s,0);
for(int k=0;k<8;k++)
{
int x=i+xj[k];
int y=j+yj[k];
if(x>0&&y>0&&x<=n&&y<=n&&vis[id(x,y)]==0)
{
add(ids,id(x,y),1e9);
add(id(x,y),ids,0);
}
}
}
else
{
add(ids,t,1);
add(t,ids,0);
}
}
while(bfs())
ans+=dfs(s,1e9);
printf("%lld\n",n*n-m-ans);
return 0;
}

方法二:
匈牙利算法。

从白点向限制的黑点连边,跑匈牙利,求最大匹配。

但是加了一个数据,匈牙利跑不过去,所以二分图的问题,最好转成网络流来做,更快。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=50010;
const int M=500010;
int tot,n,m,nxt[M],go[M],hd[N],girl[N],ans,wz[210][210];
bool bk[N],vis[N];
int xj[10]={2,2,-2,-2,1,1,-1,-1};
int yj[10]={1,-1,1,-1,2,-2,2,-2};
inline int read(){
int ans=0;char c;bool flag=true;
for(;c<'0'||c>'9';c=getchar())if(c=='-')flag=false;
for(;c>='0'&&c<='9';c=getchar())ans=ans*10+c-'0';
return flag ? ans : -ans;
}
inline void add(int x,int y)
{
nxt[++tot]=hd[x];go[tot]=y;hd[x]=tot;
return ;
}
inline bool find(int x)
{
for(int i=hd[x];i;i=nxt[i])
{
int y=go[i];
if(vis[y])continue;
vis[y]=1;
if(!girl[y]||find(girl[y]))
{
girl[y]=x;
return 1;
}
}
return 0;
}
inline int id(int x,int y)
{
return (x-1)*n+y;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
int x,y;
x=read(),y=read();
bk[id(x,y)]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
wz[i][j]=id(i,j);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(bk[wz[i][j]])continue;
if((i+j)%2)
for(int k=0;k<8;k++)
{
int x=i+xj[k];
int y=j+yj[k];
if(x>0&&y>0&&x<=n&&y<=n&&bk[wz[x][y]]==0)
add(wz[i][j],wz[x][y]);
} }
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if((i+j)%2&&!bk[wz[i][j]])
{
memset(vis,0,sizeof(vis));
if(find(wz[i][j]))ans++;
}
printf("%d\n",n*n-m-ans);
return 0;
}

    

P3355 骑士共存问题题解的更多相关文章

  1. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  2. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  3. 网络流棋盘模型 | P3355 骑士共存问题 P4304 [TJOI2013]攻击装置

    题面(骑士共存问题) 在一个 \(n \times n\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 \(n \times n ...

  4. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  5. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  6. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  7. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  8. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

  9. LUOGU P3355 骑士共存问题(二分图最大独立集)

    传送门 因为骑士只能走"日"字,所以一定是从一个奇点到偶点或偶点到奇点,那么这就是一张二分图,题目要求的其实就是二分图的最大独立集.最大独立集=n-最大匹配. #include&l ...

  10. P3355 骑士共存问题 (最小割)

    题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击 题解:这个题仔细想想居然和方格取数是一样的!!! 每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色 s-> ...

随机推荐

  1. 如何将data中字符传的换行正常显示

    后端传来的字符串有换行符: 直接输出的效果: 解决方法demo: <p class="" v-html="text"></p> js: ...

  2. Maven的核心解压与配置

    ​ Maven的核心解压与配置 @ 目录 Maven的核心解压与配置 1. Maven 官网地址 2. 解压Maven核心程序 3. 指定本地仓库 4. 配置阿里云提供的镜像仓库 5. 配置 Mave ...

  3. 8.7K+ Star!快速搭建个人在线工具箱

    大家好,我是 Java陈序员. 作为一名 "CV 工程师",每天工作中需要用到各种各样的工具来提高效率. 之前给大家安利过一款离线的开发工具集合,今天给大家推荐一款在线的开发工具箱 ...

  4. 圈子社交系统--在线了解前后端,APP小程序H5,三端源码交付-多重玩法,新奇有趣。

    圈子论坛社区系统,含完整的后台PHP系统.功能:小程序授权登陆,H5和APP,手机号登陆,发帖,建圈子.发活动.圈主可置顶推荐帖子,关注.点赞.评论.交流等.可作为圈子贴吧等自媒体. 一款全开源支持免 ...

  5. 一键自动化博客发布工具,用过的人都说好(segmentfault篇)

    segmentfault是我在这些平台中看过界面最为简洁的博客平台了. 今天就以segmentfault为例,讲讲在blog-auto-publishing-tools中的实现原理. 前提条件 前提条 ...

  6. 模型压缩与部署-书生浦语大模型实战营学习笔记5&大语言模型11

    大语言模型-11.模型压缩与部署 书生浦语大模型实战营学习笔记4-模型压缩与部署 本文包括第二期实战营的第5课内容,介绍关于模型压缩的相关内容,主要包括.模型量化和模型部署的相关内容. 模型部署 定义 ...

  7. Ubuntu的apt-get/yarm/wget命令详解

    目录 一.查看本机是否安装软件 二.apt-get 三.yum 四.wget apt-cache和apt-get是apt包的管理工具, 他们根据/etc/apt/sources.list里的软件源地址 ...

  8. ansible系列(31)--ansible实战之部署WEB集群架构(1)

    目录 1. WEB集群环境说明 2. ansible部署WEB集群实现思路 3. ansible基础环境部署 1. WEB集群环境说明 WEB集群环境说明如下: 客户端:模拟外网主机,地址:192.1 ...

  9. C 语言编程 — 高级数据类型 — 结构体与位域

    目录 文章目录 目录 前文列表 结构体 定义结构体 初始化结构体变量 访问结构体成员 将结构体作为实参传入函数 指向结构体变量的指针 位域 定义位域 使用位域结构体的成员 前文列表 <程序编译流 ...

  10. 安卓开发封装处理Retrofit协程请求中的异常

    上篇文章讲解了怎么使用Kotlin的协程配合Retrofit发起网络请求,使用也是非常方便,但是在处理请求异常还不是很人性化.这篇文章,我们将处理异常的代码进行封装,以便对异常情况返回给页面,提供更加 ...