During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.



Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:

There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.

Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.

Would you help Qin Shi Huang?

A city can be considered as a point, and a road can be considered as a line segment connecting two points.


Input

The first line contains an integer t meaning that there are t test cases(t <= 10).

For each test case:

The first line is an integer n meaning that there are n cities(2 < n <= 1000).

Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.

It is guaranteed that each city has a distinct location.

Output

For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.

Sample Input

2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40

Sample Output

65.00
70.00

题意:

给出N个点的坐标以及每个点的人口, 要求将这N个点通过N-1条边连接起来, 权值为两点直接距离, B为距离和, 同时可以选中一条边, 使得该边权值变为0, A为该边两点人口数量. 求A/B的最大值

题解:

既然要求A/B的最大值, 就一定要A最大, B最小, 所以B需要求一下MST, A的话我们直接枚举每条边就好了, 如果该边已经在MST中,$$ ans = max(ans, A/(B-w[i][j]));$$ 否则$$ans = max(ans, A/(B-maxD[i][j]));$$

可以看到, 虽然这里没有直接使用次小生成树, 但是完全用到了次小生成树求出的几个数组, 这也是前面为何没有直接求出次小生成树的原因, 因为大部分的题目必然不是裸题, 所以更要仔细理解次小生成树的思想

#include<bits/stdc++.h>
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef long long LL;
const int inf = 1 << 30;
const LL maxn = 1010; int N;
double w[maxn][maxn];
struct node {
int x, y;
int p;
node(int xx, int yy, int pp) { x = xx, y = yy, p = pp; }
node() {}
} vs[maxn];
double getDis(int x1, int y1, int x2, int y2) {
return sqrt((double)(x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
double d[maxn];
bool used[maxn];
double maxD[maxn][maxn]; //MST中从i->j的最大权值
int pre[maxn]; //某一点父节点
bool mst[maxn][maxn]; //该点是否已经在MST中
typedef pair<int, int> P;
double Prim(int s) {
fill(d, d + maxn, inf);
fill(pre, pre + maxn, s);
ms(maxD, 0); ms(used, 0); ms(mst, 0);
priority_queue<P, vector<P>, greater<P> > q;
q.push(P(d[s] = 0, s));
double res = 0;
while (!q.empty()) {
P cur = q.top();
q.pop();
int u = cur.second;
if (used[u])
continue;
used[u] = true, res += d[u];
mst[u][pre[u]] = mst[pre[u]][u] = true; //加入到MST中
for (int v = 1; v <= N; ++v) {
if (used[v] && w[u][v] < inf) //只更新MST中的
maxD[u][v] = maxD[v][u] = max(maxD[pre[u]][v], d[u]);
if (w[u][v] < d[v]) {
d[v] = w[u][v];
pre[v] = u; //更新父节点
q.push(P(d[v], v));
}
}
}
return res;
}
int main() {
//freopen("in.txt", "r", stdin);
int T, a, b, c;
scanf("%d", &T);
while (T--) {
ms(vs, 0); fill(w[0], w[0] + maxn * maxn, inf);
scanf("%d", &N);
for (int i = 1; i <= N; ++i) {
scanf("%d%d%d", &a, &b, &c);
vs[i] = node(a, b, c);
}
for (int i = 1; i < N; ++i)
for (int j = i + 1; j <= N; ++j)
w[i][j] = w[j][i] = getDis(vs[i].x, vs[i].y, vs[j].x, vs[j].y); //枚举删边, 找出最大值
double B = Prim(1), A, ans = -1;
for (int i = 1; i < N; ++i)
for (int j = i + 1; j <= N; ++j) {
A = vs[i].p + vs[j].p;
//这条边未在MST中使用, 尝试加边并删去生成环中的最长边, 已使用则直接变0
if (mst[i][j]) {
ans = max(ans, A / (B - w[i][j]));
}
else {
ans = max(ans, A / (B - maxD[i][j]));
}
}
printf("%.2lf\n", ans);
} return 0;
}

【题解】Qin Shi Huang's National Road System HDU - 4081 ⭐⭐⭐⭐ 【次小生成树】的更多相关文章

  1. Qin Shi Huang's National Road System HDU - 4081(树形dp+最小生成树)

    Qin Shi Huang's National Road System HDU - 4081 感觉这道题和hdu4756很像... 求最小生成树里面删去一边E1 再加一边E2 求该边两顶点权值和除以 ...

  2. LA 5713 - Qin Shi Huang's National Road System(HDU 4081) MST

    LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  3. HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  5. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  7. UValive 5713 Qin Shi Huang's National Road System

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  8. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  9. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  10. [hdu P4081] Qin Shi Huang’s National Road System

    [hdu P4081] Qin Shi Huang’s National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

随机推荐

  1. 3款高评价的.Net开发的WMS系统推荐

    本文简介 WMS仓库管理系统是一款专业的仓库管理系统,旨在帮助企业实现仓储管理的智能化.信息化和自动化.通过该系统,企业可以实现对仓库的进货.出货.库存等各个环节的全面把控,提高仓储管理水平,降低运营 ...

  2. 文心一言 VS 讯飞星火 VS chatgpt (145)-- 算法导论12.1 5题

    五.用go语言,因为在基于比较的排序模型中,完成n个元素的排序,其最坏情况下需要 Ω(nlgn) 时间.试证明:任何基于比较的算法从 n 个元素的任意序列中构造一棵二又搜索树,其最坏情况下需要 Ω(n ...

  3. 品牌全渠道营销系统如何与不同经销商ERP打通

    品牌商在与各经销商ERP系统打通方面面临的挑战.传统的ERP系统往往使得数据收集和合作变得繁琐且低效,导致市场响应迟缓,影响整体的供应链管理和市场决策.我们的解决方案旨在破解这一难题,提供一个全渠道营 ...

  4. jmeter--jsr223组件使用和功能详解

    相比于BeanShell 取样器,JSR223取样器具有可大大提高性能的功能(编译)如果需要,一定要使用JSR223取样器编写脚本是更好的选择!!! 属性描述名称:显示的此取样器的描述性名称,可自定义 ...

  5. 0x06.HelloPHP

    PHP基础 格式 最后一句可以不加分号 <?php echo "hello" ?> 可以不加结束标签,但是最后一句要加分号 <?php echo "he ...

  6. MybatisPlus条件查询方法全解

    1.是什么? MybatisPlus通过条件构造器可以组装复杂的查询条件,写一些复杂的SQL语句,从而简化我们的开发提升我们的开发效率 # 可以简单的理解为就是我们写SQL语句时where后面的条件 ...

  7. ElasticSearch之线程池

    ElasticSearch节点可用的CPU核的数量,通常可以交给ElasticSearch来自行检测和判定,另外可以在``elasticsearch.yml`中显式指定.样例如下: node.proc ...

  8. Asp .Net Core 集成 FluentValidation 强类型验证规则库

    目录 入门程序 安装 案例:登录 验证器 内置验证器 自定义验证器 编写自定义验证器 可重复使用的属性验证器 本地化 DI 自动验证 官网:https://docs.fluentvalidation. ...

  9. Windows和Linux下通过go实现自删除

    自删除在攻防中都挺常见的,自写远控通常也有需要.可是在度娘里搜不到什么办法,于是就查查Windows api学习记录一回. linux 先获得当前程序的文件名,再使用syscall这个包中的Unlin ...

  10. JVM优化:如何进行JVM调优,JVM调优参数有哪些

    Java虚拟机(JVM)是Java应用运行的核心环境.JVM的性能优化对于提高应用性能.减少资源消耗和提升系统稳定性至关重要.本文将深入探讨JVM的调优方法和相关参数,以帮助开发者和系统管理员有效地优 ...