本文地址:https://www.cnblogs.com/wanger-sjtu/p/17501119.html

VectorizeLoop这个PASS就是对标记为ForKind::kVectorizedFor循环做向量化处理,并对For循环中的语句涉及到的变量,替换为Ramp,以便于在Codegen的过程中生成相关的向量化运算的指令。

VectorizeLoop这个PASS的入口函数如下,只有在打开enable_vectorize=true的情况下载才会被启用,否则VectorizeSkipper会把ForKind::kVectorizedFor循环替换为普通循环。

Pass VectorizeLoop(bool enable_vectorize) {
auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
auto* n = f.CopyOnWrite();
if (enable_vectorize) {
n->body = LoopVectorizer()(std::move(n->body));
} else {
n->body = VectorizeSkipper()(std::move(n->body));
}
return f;
};
return CreatePrimFuncPass(pass_func, 0, "tir.VectorizeLoop", {});
}

下面就以UT中的几个例子,介绍一下源码实现。

vectorize_loop

dtype = "int64"
n = te.var("n")
ib = tvm.tir.ir_builder.create()
A = ib.pointer("float32", name="A") with ib.for_range(0, n) as i:
with ib.for_range(0, 4, kind="vectorize") as j:
 A[i*4+j] += tvm.tir.const(1, A.dtype)
stmt = ib.get()
assert isinstance(stmt.body, tvm.tir.For)
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt))
stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body

上面的这个代码完成的是,向量加法,长度为4n的向量A,对每个元素+1。

# before
for (i, 0, n) {
vectorized (j, 0, 4) {
A[((i*4) + j)] = (A[((i*4) + j)] + 1f)
}
}
# after
for (i, 0, n) {
A[ramp((i*4), 1, 4)] = (A[ramp((i*4), 1, 4)] + x4(1f))
}

可以看到在经过VectorizeLoop的PASS以后,内层的循环消掉了,替换成为了一个Ramp的向量指令,这个在CPU中会被替换为SIMD指令(neon,AVX等)

PASS流程

在向量化的处理的PASS中是在LoopVectorizer中处理的,处理For循环部分。

class LoopVectorizer : public StmtMutator {
public:
Stmt VisitStmt_(const ForNode* op) final {
if (op->kind == ForKind::kVectorized) {
ICHECK(is_zero(op->min));
auto* extent_as_int = op->extent.as<IntImmNode>();
if (!extent_as_int || extent_as_int->value < 1) {
LOG(FATAL) << "Failed to vectorize loop with extent " << op->extent;
}
return Vectorizer(op->loop_var, static_cast<int>(extent_as_int->value))(op->body);
} else {
return StmtMutator::VisitStmt_(op);
}
}
};

当遇到需要向量化的节点时,首先记录循环变量和范围,这个在后续替换相应的Load和Store操作为Ramp时用到。然后就到了Vectorizer部分,遍历For循环体,修改相应的stmt。

Vectorizer(Var var, int var_lanes) : var_(var), var_lanes_(var_lanes) {
ramp_ = Ramp(0, 1, var_lanes);
}

在Vectorizer中对不同的PrimExprStmt做了重载。这里不逐一介绍,就以上面的向量加计算,介绍一下用到的函数以及流程。

首先看一下这里的上面sch的For的循环内的计算逻辑:

 A[((i*4) + j)] = (A[((i*4) + j)] + 1f)

因为TVM中,Stmt的表达可以视为一个DSL的语言,访问的时候也是按照深度优先的策略遍历的AST,这里把上面的计算过程简单表示为一个AST的语法树,然后再分析一下流程中调用的各个函数是如何处理的。

从上面的AST的示意图可以看出来,对于上面的sch,依次访问了BufferStoreNodeAdd MulBufferLoadNode 等。这里就以这几个Node的处理介绍一下向量化的过程。

所谓向量化的过程就是把这个标记为kVectorized的标量循环操作映射到向量化的操作,对于上面的例子来说就是把所有关于j的访问映射为RampNode,以便于后续处理可以正确生成相应的指令。

BufferStoreNode

BufferStoreNode中有三部分:

  • buffer——写入的buffer
  • value——待写入的值或者表达式
  • indices——写入buffer的坐标

    这里的目的就是修改valueindices中的内容。

    对于indices,是在这里完成的。最终通过MapHelper依次访问了indices的表达式。
auto fmutate = [this](const PrimExpr& index) { return this->VisitExpr(index); };
Array<PrimExpr> indices = op->indices.Map(fmutate);

对于value 则是直接遍历。

PrimExpr value = this->VisitExpr(op->value);
AddNode

对于AddNodeSubNode 都会走到AddSubVec这个模板函数。

这个函数里面首先会遍历左右表达式,

PrimExpr a = this->VisitExpr(op->a);
PrimExpr b = this->VisitExpr(op->b);
if (a.same_as(op->a) && b.same_as(op->b)) {
return GetRef<PrimExpr>(op);
} else {
int lanes = std::max(a.dtype().lanes(), b.dtype().lanes());
if (lanes != 1) {
const RampNode* b_ramp = b.as<RampNode>();
const RampNode* a_ramp = a.as<RampNode>();
if (a.dtype().lanes() == 1 && b_ramp) {
return Ramp(fcompute(a, b_ramp->base),
fcompute(make_zero(b_ramp->stride.dtype()), b_ramp->stride), b_ramp->lanes);
}
if (b.dtype().lanes() == 1 && a_ramp) {
return Ramp(fcompute(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
}
}
return fcompute(BroadcastTo(a, lanes), BroadcastTo(b, lanes));

如果遍历之后没有变化,就直接返回了。而对于这里的我们需要计算的是

((i*4) + j)

j 是需要向量化的坐标。i*4 是没有变化的。遍历以后a没变化,b变成了T.Ramp(0, 1, 4) 这时候lanes=4,会走到第一个if分支,返回的是新构造的RampNode

 T.Ramp(i * 4, 1, 4)

其他的分支也类似。比如:

A[i * 4 + j] + T.float32(1)
// --- after ---
A[i * 4:i * 4 + 4] T.float32(1)

这里会把a、b broadcast为一个向量再做计算。

VarNode

对于这里的VarNode判断就比较简单了,如果匹配到的是需要向量化的变量,就返回构造函数中构造的RampNode,否则就返回。其他的操作,暂时略过。

Var var = GetRef<Var>(op);
if (var.same_as(var_)) {
return ramp_;
}
// ...
else {
return std::move(var);
}
MulNode
PrimExpr a = this->VisitExpr(op->a);
PrimExpr b = this->VisitExpr(op->b);
if (a.same_as(op->a) && b.same_as(op->b)) {
return GetRef<PrimExpr>(op);
} else {
int lanes = std::max(a.dtype().lanes(), b.dtype().lanes());
if (lanes != 1) {
const RampNode* b_ramp = b.as<RampNode>();
const RampNode* a_ramp = a.as<RampNode>();
if (a_ramp && b.dtype().lanes() == 1 && analyzer_.CanProve(b > 0)) {
return Ramp(a_ramp->base * b, a_ramp->stride * b, a_ramp->lanes);
}
if (b_ramp && a.dtype().lanes() == 1 && analyzer_.CanProve(a > 0)) {
return Ramp(b_ramp->base * a, b_ramp->stride * a, b_ramp->lanes);
}
}
return Mul(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
}
return BinaryVec<Mul>(op);

这里的处理逻辑与Add基本一致。只是在计算RampNode的时候有点区别。

TVM 源码阅读PASS — VectorizeLoop的更多相关文章

  1. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

  2. Rpc框架dubbo-client(v2.6.3) 源码阅读(二)

    接上一篇 dubbo-server 之后,再来看一下 dubbo-client 是如何工作的. dubbo提供者服务示例, 其结构是这样的!dubbo://192.168.11.6:20880/com ...

  3. caffe中batch norm源码阅读

    1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的 ...

  4. mxnet源码阅读笔记之include

    写在前面 mxnet代码的规范性比Caffe2要好,看起来核心代码量也小很多,但由于对dmlc其它库的依赖太强,代码的独立性并不好.依赖的第三方库包括: cub dlpack dmlc-core go ...

  5. go 中 select 源码阅读

    深入了解下 go 中的 select 前言 1.栗子一 2.栗子二 3.栗子三 看下源码实现 1.不存在 case 2.select 中仅存在一个 case 3.select 中存在两个 case,其 ...

  6. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  7. 【原】FMDB源码阅读(一)

    [原]FMDB源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 说实话,之前的SDWebImage和AFNetworking这两个组件我还是使用过的,但是对于 ...

  8. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

  9. 【原】AFNetworking源码阅读(五)

    [原]AFNetworking源码阅读(五) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中提及到了Multipart Request的构建方法- [AFHTTP ...

  10. 【原】AFNetworking源码阅读(四)

    [原]AFNetworking源码阅读(四) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇还遗留了很多问题,包括AFURLSessionManagerTaskDe ...

随机推荐

  1. 如何快速在Ubuntu上搭建python环境?

    如何快速在Ubuntu上搭建python环境? 一.准备好python源码包 使用curl命令获取python源码包的过程很缓慢且容易失败,因此提前去官网下载好后放在本地是最好的办法. 二.启动镜像并 ...

  2. [操作系统/Linux]磁盘分区

    0 基本概念1: 盘片/盘面/磁头/扇区/磁道/柱面 本小节摘自: 硬盘基本知识(磁头.磁道.扇区.柱面) - 博客园 一张磁盘并不是拿过来直接用,需要先分区. 磁盘本身有很多sector(扇区).c ...

  3. 深入理解 python 虚拟机:字节码教程(1)——原来装饰器是这样实现的

    深入理解 python 虚拟机:字节码教程(1)--原来装饰器是这样实现的 在本篇文章当中主要给大家介绍在 cpython 当中一些比较常见的字节码,从根本上理解 python 程序的执行.在本文当中 ...

  4. LeeCode哈希问题(二)

    LeeCode 454: 四数相加II 题目描述 给你四个整数数组 nums1.nums2.nums3 和 nums4,数组长度均为 n ,请你计算有多少个元组 (i, j, k, l) 能满足: \ ...

  5. laravel 中使用的 PDF 扩展包 laravel-dompdf 和 laravel-snappy

    这两天项目中需要将HTML页面转换为PDF文件方便打印,我在网上搜了很多资料.先后尝试了laravel-dompdf和laravel-snappy两种扩展包,个人感觉laravel-snappy比较好 ...

  6. elasticsearch升级和索引重建。

    1.背景描述   2020年团队决定对elasticsearch升级.es(elasticsearch缩写,下同)当前版本为0.9x,升级到5.x版本.es在本公司承载三个部分的业务,站内查询,订单数 ...

  7. axios文件下载!!!!

    前端 download(){ debugger; this.loading = true; axios.post('http://localhost:8081/brand_case/dao.do?me ...

  8. docker上面部署nginx-waf 防火墙“modsecurity”,使用CRS规则,搭建WEB应用防火墙

    web防火墙(waf)免费开源的比较少,并且真正可以商用的WAF少之又少,modsecurity 是开源防火墙鼻祖并且有正规公司在维护着,目前是https://www.trustwave.com在维护 ...

  9. Django框架——手写web框架、wsgiref模块、动静态网页、jinja2模块、主流web框架、Django简介、基本使用、app概念、目录结构、三板斧

    web应用 '''通过浏览器访问的应用程序!!!''' 1.两种模式c/s b/s B/S:browser---------------->server 2.web应用程序的有点 2.1 只需要 ...

  10. mybatis xml 中 大于、小于、等于 写法

    在 *.xml 中使用常规的 < > = <= >= 会与xml的语法存在冲突 方法一:使用xml 原生转义的方式进行转义 字符名称 sql符号 转义字符 大于号 > & ...