「codeforces - 1519E」Off by One
点 \(A\) 与 \((0,0)\),\(B\) 共线的充要条件是 \(\frac{y_A}{x_A}=\frac{y_B}{x_B}\),即 \(k_{OA}=k_{OB}\)。又考虑到题目提出刻画斜率相等双点间的关系,所以不妨把所有斜率相同的点看作一个。再考虑刻画点的移动,由于与共线的点是移动后两者之间的哪一者无妨,所以我们可以在移动后的两点所代表的斜率集合之间连一条边,问题就转化成了在一张无向图中,删除或一条三点二边的链,或一个二点二边的环,询问最多可以删除多少次,并给出可行方案。那么答案中最大值的部分我们可以拿出来,即 \(\lfloor\frac{\text{\# edges}}{2}\rfloor\)。
论删边的顺序,我们可以建出转化后图的任一生成树,并考虑非树边。考虑任一结点 \(x\),设有非树边边 \(\lang x,y\rang\),我们可以将 \(y\) 给“拖下去”,意即新建一个点,并将 \(x\) 连向该点。其正确性并非自明,但是考虑深度可以简单证明。至于答案的求解过程,参见常见 trick 树的最大匹配(但是略有不同,具体见代码)。
说一下如何精简实现,你的代码逻辑可以不是「建出原图 - 得到生成树 - 新建节点 - 求匹配」,更加优秀的逻辑可以是「建出原图并通过动态维护连通性新建节点 - 在求出生成树的同时获得深度信息 - 求匹配」。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n, rn, uset[500100], head[500100], to[1000100], nxt[1000100], ent;
ll gcd(ll x, ll y) {
return y == 0 ? x : gcd(y, x%y);
}
int ldr(int x) {
while (x != uset[x]) x = uset[x] = uset[uset[x]];
return x;
}
bool sm(int x, int y) {
return ldr(x) == ldr(y);
}
void mrg(int x, int y) {
if (ldr(x) != ldr(y)) {
uset[ldr(y)] = ldr(x);
}
}
struct frac {
ll p, q;
frac() {}
explicit frac(ll a, ll b) : p(a), q(b) {
norm(*this);
}
bool operator<(const frac& o) const {
return p < o.p || (p == o.p && q < o.q);
}
void norm(frac& x) {
ll g = gcd(x.p, x.q);
x.p /= g, x.q /= g;
}
};
map<frac, int> mp;
void add(int x, int y) {
to[++ent] = y, nxt[ent] = head[x], head[x] = ent;
}
bool vis[500100];
int dep[500100], fa[500100], eid[500100], mxd;
set<int> ch[500100], sd[500100];
void dfs(int x) {
mxd = max(mxd, dep[x]);
vis[x] = 1;
sd[dep[x]].insert(x);
for (int i = head[x], y; i; i = nxt[i]) {
if (vis[y = to[i]]) {
continue;
}
fa[y] = x, dep[y] = dep[x]+1;
ch[x].insert(y);
eid[y] = (i+1)/2;
dfs(y);
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; ++i) {
ll a, b, c, d;
cin >> a >> b >> c >> d;
frac cur((a+b)*d, b*c);
if (!mp.count(cur)) {
++rn;
mp[cur] = uset[rn] = rn;
}
int u = mp[cur], v;
cur = frac(a*d, b*(c+d));
if (!mp.count(cur)) {
++rn;
mp[cur] = uset[rn] = rn;
}
v = mp[cur];
if (sm(u, v)) {
v = ++rn;
}
else mrg(u, v);
add(u, v), add(v, u);
}
for (int i = 1; i <= rn; ++i) {
if (!vis[i]) dfs(i);
}
vector<pair<int, int>> ans;
for (int d = mxd; d >= 1; --d) {
for (int x : sd[d]) {
if (int(ch[fa[x]].size()) >= 2) {
ch[fa[x]].erase(x);
int bro = *ch[fa[x]].begin();
ch[fa[x]].erase(bro), sd[dep[bro]].erase(bro);
ans.emplace_back(eid[x], eid[bro]);
}
else if (fa[fa[x]]) {
ch[fa[x]].erase(x);
ch[fa[fa[x]]].erase(fa[x]);
sd[dep[fa[x]]].erase(fa[x]);
ans.emplace_back(eid[x], eid[fa[x]]);
}
}
}
cout << ans.size() << "\n";
for (auto it : ans) {
cout << it.first << " " << it.second << "\n";
}
}
「codeforces - 1519E」Off by One的更多相关文章
- 「CodeForces 581D」Three Logos
BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...
- 「CodeForces - 50C 」Happy Farm 5 (几何)
BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...
- 「CodeForces - 598B」Queries on a String
BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...
- 「CodeForces - 717E」Paint it really, really dark gray (dfs)
BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...
- 「CodeForces 476A」Dreamoon and Stairs
Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...
- 「CodeForces 546B」Soldier and Badges 解题报告
CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...
- 「Codeforces 79D」Password
Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...
- 「Codeforces 468C」Hack it!
Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- 「codeforces - 1284G」Seollal
给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...
随机推荐
- C++面试八股文:指针占用多少个字节?
某日小二参加XXX科技公司的C++工程师开发岗位4面: 面试官:memset.memcpy和strcpy的区别是什么? 小二:memset用于将一块内存设置为特定的值, memcpy用于将一块内存从一 ...
- 今天在内部 Galaxy 分析平台操作探针引物设计小工具程序,调用 Ensembl API 获取相关序列和信息时,发现官网 MySQL server 异常,报告问题后当天晚上就收到了回复,并且修......
本文分享自微信公众号 - 生信科技爱好者(bioitee).如有侵权,请联系 support@oschina.cn 删除.本文参与"OSC源创计划",欢迎正在阅读的你也加入,一起分 ...
- Linux下程序时间消耗监控与统计
良好的计时器可帮助程序开发人员确定程序的性能瓶颈,或对不同算法进行性能比较.但要精确测量程序的运行时间并不容易,因为进程切换.中断.共享的多用户.网络流量.高速缓存访问及转移预测等因素都会对程序计时产 ...
- 自研ORM 完美支持 Exists查询 非常灵活
示例代码 Case 1 Code var data = db.Query<Product>() .Where(w => db.Query<Product>().Where ...
- 使用Kettle定时从数据库A刷新数据到数据库B
一.需求背景 由于项目场景原因,需要将A库(MySQL)中的表a.表b.表c中的数据定时T+1 增量的同步到B库(MySQL).这里说明一下,不是数据库的主从备份,就是普通的数据同步.经过技术调研,发 ...
- Codeforces Round #877 (Div. 2) A-E
A 代码 #include <bits/stdc++.h> using namespace std; using ll = long long; bool solve() { int n; ...
- 1.7 完善自定位ShellCode后门
在之前的文章中,我们实现了一个正向的匿名管道ShellCode后门,为了保证文章的简洁易懂并没有增加针对调用函数的动态定位功能,此类方法在更换系统后则由于地址变化导致我们的后门无法正常使用,接下来将实 ...
- Kotlin 常用语法糖记录
原文地址: Kotlin 常用语法糖记录 - Stars-One的杂货小窝 当使用 Kotlin 编程时,有一些常用的函数可以帮助我们简化代码并提高开发效率. 稍微列举下常用的方法 runCatchi ...
- 盘古大模型加持,华为云开天aPaaS加速使能千行百业应用创新
摘要:开天aPaaS,让优秀快速复制,支撑开发者及伙伴上好云.用好云. 本文分享自华为云社区<盘古大模型加持,华为云开天aPaaS加速使能千行百业应用创新>,作者:开天aPaaS小助手. ...
- Java使用qq邮箱发送邮件(可做验证码使用)
pom.xml中导入发邮件需要的jar包 <!-- 邮箱 --> <dependency> <groupId>javax.mail</groupId> ...