LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题
️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。
学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。
本文是 LeetCode 上分之旅系列的第 45 篇文章,往期回顾请移步到文章末尾~
LeetCode 双周赛 113 概览
T1. 使数组成为递增数组的最少右移次数(Easy)
- 标签:模拟、暴力、线性遍历
T2. 删除数对后的最小数组长度(Medium)
- 标签:二分答案、双指针、找众数、
T3. 统计距离为 k 的点对(Medium)
- 标签:枚举、散列表
T4. 可以到达每一个节点的最少边反转次数(Hard)
- 标签:树上 DP

T1. 使数组成为递增数组的最少右移次数(Easy)
https://leetcode.cn/problems/minimum-right-shifts-to-sort-the-array/description/
题解一(暴力枚举)
简单模拟题。
由于题目数据量非常小,可以把数组复制一份拼接在尾部,再枚举从位置 $i$ 开始长为 $n$ 的连续循环子数组是否连续,是则返回 $(n - i)%n$:
class Solution {
fun minimumRightShifts(nums: MutableList<Int>): Int {
val n = nums.size
nums.addAll(nums)
for (i in 0 until n) {
if ((i + 1 ..< i + n).all { nums[it] > nums[it - 1]}) return (n - i) % n
}
return -1
}
}
class Solution:
def minimumRightShifts(self, nums: List[int]) -> int:
n = len(nums)
nums += nums
for i in range(0, n):
if all(nums[j] > nums[j - 1] for j in range(i + 1, i + n)):
return (n - i) % n
return -1
复杂度分析:
- 时间复杂度:$O(n^2)$ 双重循环;
- 空间复杂度:$O(n)$ 循环数组空间。
题解二(线性遍历)
更优的写法,我们找到第一个逆序位置,再检查该位置后续位置是否全部为升序,且满足 $nums[n - 1] < nums[0]$:
class Solution {
fun minimumRightShifts(nums: List<Int>): Int {
val n = nums.size
for (i in 1 until n) {
// 第一段
if (nums[i] >= nums[i - 1]) continue
// 第二段
if (nums[n - 1] > nums[0]) return -1
for (j in i until n - 1) {
if (nums[j] > nums[j + 1]) return -1
}
return n - i
}
return 0
}
}
复杂度分析:
- 时间复杂度:$O(n)$ $i$ 指针和 $j$ 指针总计最多移动 $n$ 次;
- 空间复杂度:$O(1)$ 仅使用常量级别空间。
T2. 删除数对后的最小数组长度(Medium)
https://leetcode.cn/problems/minimum-array-length-after-pair-removals/
题解一(二分答案)
问题存在单调性:
- 当操作次数 $k$ 可以满足时,操作次数 $k - 1$ 一定能满足;
- 当操作次数 $k$ 不可满足时,操作次数 $k + 1$ 一定不能满足。
那么,原问题相当于求解满足目标的最大操作次数。
现在需要考虑的问题是:如何验证操作次数 $k$ 是否可以完成?
一些错误的思路:
- 尝试 1 - 贪心双指针: $nums[i]$ 优先使用最小值,$nums[j]$ 优先使用最大值,错误用例:$[1 2 3 6]$;
- 尝试 2 - 贪心: $nums[i]$ 优先使用最小值,$nums[j]$ 使用大于 $nums[i]$ 的最小值,错误用例:$[1 2 4 6]$;
- 尝试 3 - 贪心: 从后往前遍历,$nums[i]$ 优先使用较大值,$nums[j]$ 使用大于 $nums[i]$ 的最小值,错误用例:$[2 3 4 8]$。
开始转换思路:
能否将数组拆分为两部分,作为 nums[i] 的分为一组,作为 $nums[j]$ 的分为一组。 例如,在用例 $[1 2 | 3 6]$ 和 $[1 2 | 4 6]$ 和 $[2 3 | 4 8]$ 中,将数组的前部分作为 $nums[i]$ 而后半部分作为 $nums[j]$ 时,可以得到最优解,至此发现贪心规律。
设数组的长度为 $n$,最大匹配对数为 $k$:
- 结论 1: 使用数组的左半部分作为 $nums[i]$ 且使用数组的右半部分作为 $nums[j]$ 总能取到最优解。反之,如果使用右半部分的某个数 $nums[t]$ 作为 $nums[i]$,相当于占用了一个较大的数,不利于后续 $nums[i]$ 寻找配对;
- 结论 2: 当固定 $nums[i]$ 时,$nums[j]$ 越小越好,否则会占用一个较大的位置,不利于后续 $nums[i]$ 寻找配对。因此最优解一定是使用左半部分的最小值与右半部分的最小值配对。
总结:如果存在 $k$ 对匹配,那么一定可以让最小的 $k$ 个数和最大的 $k$ 个数匹配。
基于以上分析,可以写出二分答案:
class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var left = 0
var right = n / 2
while (left < right) {
val k = (left + right + 1) ushr 1
if ((0 ..< k).all { nums[it] < nums[n - k + it] }) {
left = k
} else {
right = k - 1
}
}
return n - 2 * left
}
}
复杂度分析:
- 时间复杂度:$O(nlgn)$ 二分答案次数最大为 $lgn$ 次,单次检验的时间复杂度是 $O(n)$;
- 空间复杂度:$O(1)$ 仅使用常量级别空间。
题解二(双指针)
基于题解一的分析,以及删除操作的上界 $n / 2$,我们可以仅使用数组的后半部分与前半部分作比较,具体算法:
- i 指针指向索引 $0$
- j 指针指向索引 $(n + 1) / 2$
- 向右枚举 $j$ 指针,如果 $i$、$j$ 指针指向的位置能够匹配,则向右移动 $i$ 指针;
- 最后 $i$ 指针移动的次数就等于删除操作次数。
class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var i = 0
for (j in (n + 1) / 2 until n) {
if (nums[i] < nums[j]) i++
}
return n - 2 * i
}
}
复杂度分析:
- 时间复杂度:$O(n)$ 线性遍历;
- 空间复杂度:$O(1)$ 仅使用常量级别空间。
题解三(众数)
由于题目的操作只要满足 $nums[i] < nums[j]$,即两个数不相等即可,那么问题的解最终仅取决于数组中的众数的出现次数:
- 如果众数的出现次数比其他元素少,那么所有元素都能删除,问题的结果就看数组总长度是奇数还是偶数;
- 否则,剩下的元素就是众数:$s - (n - s)$
最后,由于数组是非递减的,因此可以在 $O(1)$ 空间求出众数的出现次数:
class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var s = 1
var cur = 1
for (i in 1 until n) {
if (nums[i] == nums[i - 1]) {
s = max(s, ++ cur)
} else {
cur = 1
}
}
if (s <= n - s) {
return n % 2
} else {
return s - (n - s)
}
}
}
复杂度分析:
- 时间复杂度:$O(n)$ 线性遍历;
- 空间复杂度:$O(1)$ 仅使用常量级别空间。
题解四(找规律 + 二分查找)
继续挖掘数据规律:
$s <= n - s$ 等价于众数的出现次数超过数组长度的一半,由于数组是有序的,那么一定有数组的中间位置就是众数,我们可以用二分查找找出众数在数组中出现位置的边界,从而计算出众数的出现次数。
由此,我们甚至不需要线性扫描都能计算出众数以及众数的出现次数,Nice!
当然,最后计算出来的出现次数有可能没有超过数组长度的一半。
class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
val x = nums[n / 2]
val s = lowerBound(nums, x + 1) - lowerBound(nums, x)
return max(2 * s - n, n % 2)
}
fun lowerBound(nums: List<Int>, target: Int): Int {
var left = 0
var right = nums.size - 1
while (left < right) {
val mid = (left + right + 1) ushr 1
if (nums[mid] >= target) {
right = mid - 1
} else {
left = mid
}
}
return if (nums[left] == target) left else left + 1
}
}
复杂度分析:
- 时间复杂度:$O(lgn)$ 单次二分查找的时间复杂度是 $O(lgn)$;
- 空间复杂度:$O(1)$ 仅使用常量级别空间。
相似题目:
T3. 统计距离为 k 的点对(Medium)
https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/
题解(散列表)
- 问题目标: 求 $(x1 xor x2) + (y1 xor y2) == k$ 的方案数;
- 技巧: 对于存在多个变量的问题,可以考虑先固定其中一个变量;
容易想到两数之和的问题模板,唯一需要思考的问题是如何设计散列表的存取方式:
对于满足 $(x1\ xor\ x2) + (y1\ xor\ y2) == k$ 的方案,我们抽象为两部分 $i + j = k$,其中,$i = (x1\ xor\ x2)$ 的取值范围为 $[0, k]$,而 $j = k - i$,即总共有 $k + 1$ 种方案。本题的 $k$ 数据范围很小,所以我们可以写出时间复杂度 $O(nk)$ 的算法。
class Solution {
fun countPairs(coordinates: List<List<Int>>, k: Int): Int {
var ret = 0
// <x, <y, cnt>>
val map = HashMap<Int, HashMap<Int, Int>>()
for ((x2, y2) in coordinates) {
// 记录方案
for (i in 0 .. k) {
if (!map.containsKey(i xor x2)) continue
ret += map[i xor x2]!!.getOrDefault((k - i) xor y2, 0)
}
// 累计次数
map.getOrPut(x2) { HashMap<Int, Int>() }[y2] = map[x2]!!.getOrDefault(y2, 0) + 1
}
return ret
}
}
Python 计数器支持复合数据类型的建,可以写出非常简洁的代码:
class Solution:
def countPairs(self, coordinates: List[List[int]], k: int) -> int:
c = Counter()
ret = 0
for x2, y2 in coordinates:
# 记录方案
for i in range(k + 1):
ret += c[(i ^ x2, (k - i) ^ y2)]
# 累计次数
c[(x2, y2)] += 1
return ret
复杂度分析:
- 时间复杂度:$O(n·k)$ 线性枚举,每个元素枚举 $k$ 种方案;
- 空间复杂度:$O(n)$ 散列表空间。
T4. 可以到达每一个节点的最少边反转次数(Hard)
https://leetcode.cn/problems/minimum-edge-reversals-so-every-node-is-reachable/
问题分析
初步分析:
- 问题目标: 求出以每个节点为根节点时,从根节点到其他节点的反转操作次数,此题属于换根 DP 问题
思考实现:
- 暴力: 以节点 $i$ 为根节点走一次 BFS/DFS,就可以在 $O(n)$ 时间内求出每个节点的解,整体的时间复杂度是 $O(n^2)$
思考优化:
- 重叠子问题: 相邻边连接的节点间存在重叠子问题,当我们从根节点 $u$ 移动到其子节点 $v$ 时,我们可以利用已有信息在 $O(1)$ 时间算出 $v$ 为根节点时的解。
具体实现:
- 1、随机选择一个点为根节点 $u$,在一次 DFS 中根节点 $u$ 的反转操作次数:
- 2、$u → v$ 的状态转移:
- 如果 $u → v$ 是正向边,则反转次数 $+ 1$;
- 如果 $u → v$ 是反向边,则反转次数 $- 1$(从 $v$ 到 $u$ 不用反转);
- 3、由于题目是有向图,我们可以转换为无向图,再利用标记位 $1$ 和 $-1$ 表示边的方向,$1$ 为正向边,$-1$ 为反向边。
题解(换根 DP)
class Solution {
fun minEdgeReversals(n: Int, edges: Array<IntArray>): IntArray {
val dp = IntArray(n)
val graph = Array(n) { LinkedList<IntArray>() }
// 建图
for ((from, to) in edges) {
graph[from].add(intArrayOf(to, 1))
graph[to].add(intArrayOf(from, -1))
}
// 以 0 为根节点
fun dfs(i: Int, fa: Int) {
for ((to, gain) in graph[i]) {
if (to == fa) continue
if (gain == -1) dp[0] ++
dfs(to, i)
}
}
fun dp(i: Int, fa: Int) {
for ((to, gain) in graph[i]) {
if (to == fa) continue
// 状态转移
dp[to] = dp[i] + gain
dp(to, i)
}
}
dfs(0, -1)
dp(0, -1)
return dp
}
}
复杂度分析:
- 时间复杂度:$O(n)$ DFS 和换根 DP 都是 $O(n)$;
- 空间复杂度:$O(n)$ 递归栈空间与 DP 数组空间。
推荐阅读
LeetCode 上分之旅系列往期回顾:
️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题的更多相关文章
- 刷爆 LeetCode 周赛 337,位掩码/回溯/同余/分桶/动态规划·打家劫舍/贪心
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周末是 LeetCode 第 337 场周赛,你参加了吗?这场周赛第三题有点放水,如果 ...
- LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Ea ...
- Kindle:自动追更之云上之旅
2017年5月27: 原来的程序是批处理+Python脚本+Calibre2的方式,通过设定定时任务的方式,每天自动发动到自己的邮箱中.缺点是要一直开着电脑,又不敢放到服务器上~~ 鉴于最近公司查不关 ...
- 【Leetcode周赛】从contest-81开始。(一般是10个contest写一篇文章)
Contest 81 (2018年11月8日,周四,凌晨) 链接:https://leetcode.com/contest/weekly-contest-81 比赛情况记录:结果:3/4, ranki ...
- LeetCode周赛#207
5519. 重新排列单词间的空格 #字符串 #模拟 题目链接 题意 给定字符串text,该字符串由若干被空格包围的单词组成,也就说两个单词之间至少存在一个空格.现要你重新排列空格,使每对相邻单词间空格 ...
- 键盘上各键对应的ASCII码与扫描码
键盘上各键对应的ASCII码与扫描码 vbKeyLButton 0x1 鼠标左键vbKeyRButton 0x2 鼠标右键vbKeyCancel 0x3 CANCEL 键vbKeyMButton 0x ...
- 【LeetCode动态规划#02】图解不同路径I + II(首次涉及二维dp数组,)
不同路径 力扣题目链接(opens new window) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" ). 机器人每次只能向下或者向右移 ...
- LeetCode 周赛 340,质数 / 前缀和 / 极大化最小值 / 最短路 / 平衡二叉树
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周跟大家讲到小彭文章风格的问题,和一些朋友聊过以后,至少在算法题解方面确定了小彭的风格 ...
- 【Leetcode周赛】从contest-41开始。(一般是10个contest写一篇文章)
Contest 41 ()(题号) Contest 42 ()(题号) Contest 43 ()(题号) Contest 44 (2018年12月6日,周四上午)(题号653—656) 链接:htt ...
- 【Leetcode周赛】从contest-91开始。(一般是10个contest写一篇文章)
Contest 91 (2018年10月24日,周三) 链接:https://leetcode.com/contest/weekly-contest-91/ 模拟比赛情况记录:第一题柠檬摊的那题6分钟 ...
随机推荐
- Not a managed type: class com.example.commonspojo.entity,公共实体类剥离,然后引入报错的问题及解决办法
最近搞springcloud项目遇到在商品服务中调用基本服务时jvm扫描不到的问题 需要加@entityscan 学习博客: (9条消息) Not a managed type: class com. ...
- Docker化Spring Boot应用
本文翻译自国外论坛 medium,原文地址:https://medium.com/@bubu.tripathy/dockerizing-your-spring-boot-application-75b ...
- [ARM汇编]计算机原理与数制基础—1.1.1计算机的基本原理
计算机是一种能够根据指令集自动.高速处理数据的现代化设备.它的基本原理可以总结为:输入.存储.处理和输出数据.接下来,我们将详细介绍这些基本原理. 输入 计算机通过输入设备(如键盘.鼠标等)接收外部数 ...
- GO通道:无缓冲通道与缓冲通道
转载请注明出处: 1.通道定义 在多个协程之间进行通信和管理,可以使用 Go 语言提供的通道(Channel)类型.通道是一种特殊的数据结构,可以在协程之间进行传递数据,从而实现协程之间的通信和同步. ...
- SLF4J门面日志框架源码探索
1 SLF4J介绍 SLF4J即Simple Logging Facade for Java,它提供了Java中所有日志框架的简单外观或抽象.因此,它使用户能够使用单个依赖项处理任何日志框架,例如:L ...
- tvm-多线程代码生成和运行
本文链接 https://www.cnblogs.com/wanger-sjtu/p/16818492.html 调用链 tvm搜索算子在需要多线程运行的算子,是在codegen阶段时插入TVMBac ...
- uni-app简单通用Request网络请求 支持请求成功 失败回调
uni-app简单通用Request网络请求 支持请求成功 失败回调; 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=12794 ...
- 「学习笔记」vector
本文并不是 vector 的入门教程. 定义 std::vector 是封装动态数组的顺序容器. vector 通常占用多于静态数组的空间,因为要分配更多内存以管理将来的增长.如果元素数量已知,可以使 ...
- 通用权限系统-Spring-Boot-Starter
Spring-Boot-Starter 自定义Starter 案例一:读取application.yml中的参数 1.创建 1.创建maven工程hello-spring-boot-starter 2 ...
- Android LinearLayout快速设置每个item间隔
原文地址: Android LinearLayout快速设置每个item间隔 平常使用LinearLayout的时候,有时候会需要对每个item设置间距,但是每个item都加上margin的方法实在有 ...