1426: 收集邮票

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 261  Solved: 209
[Submit][Status][Discuss]

Description

有n种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱。 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。

Input

一行,一个数字N N<=10000

Output

要付出多少钱. 保留二位小数

Sample Input

3

Sample Output

21.25

HINT

Source

Solution

第一次见概率题这么做的...好厉害

首先我们定义$g[i]$表示现在有$i$张,要买到$n$张的期望次数;

定义$P(x,i)$为买$x$次能从$i$种买到$n$种的概率。

那么可以得到:

$$g[i]=\sum _{x=0}^{\infty }x*P(x,i)$$

那么就有:

$$g[i]=g[i]*\frac{i}{n}+g[i+1]*\frac{n-i}{n}+1$$

$$g[i]-g[i]*\frac{i}{n}=g[i+1]*\frac{n-i}{n}+1$$

$$g[i]*\frac{n-i}{n}=g[i+1]*\frac{n-i}{n}+1$$

$$g[i]=(g[i+1]*\frac{n-i}{n}+1)*\frac{n}{n-i}$$

得到$g[i]=g[i+1]+\frac{n}{n-i}$ ,且知道$g[n]=0$

那么我们设$f[i][j]$表示还现在有$i$张,下一张是$j$元,买到$n$张的期望

显然$f[i][j]$到$f[i][j+1]$的概率是$\frac{i}{n}$,到$f[i+1][j+1]$的概率是$\frac{n-i}{n}$,并且付出的代价都是$j$

所以转移显然:

$$f[i][j]=\frac{i}{n}*f[i][j+1]+\frac{n-i}{n}*f[i+1][j+1]+j$$

但是$f[i][j]$是的递推是无穷大的,所以不能直接递推,考虑它的一些性质:

$$f[i][j]=\sum_{x=0}^{\infty }[j+(j+1)+...+(x+j-1)]*P(x,i)$$

显然是个等差数列求和,所以可以得到:

$$f[i][j]=\sum _{x=0}^{\infty }\frac{x*[(j)+(x+j-1)]}{2}*P(x,i)$$

然后我们作差$f[i][j+1]-f[i][j]$得到:

$$f[i][j+1]-f[i][j]=\sum_{x=0}^{\infty}x*P(x,i)  \Leftrightarrow  f[i][j+1]-f[i][j]=g[i]$$

所以我们就可以对开始时$f[i][j]$这个式子进行化简,得到:

$$f[i][j]=f[i][j+1]*\frac{i}{n}+f[i+1][j+1]*\frac{n-i}{n}$$

$$\Rightarrow f[i][j]=(f[i][j]+g[i])*\frac{i}{n}+(f[i+1][j]+g[i+1])*\frac{n-i}{n}+j$$

$$f[i][j]=\frac{[(f[i+1][j]+g[i+1])*\frac{n-i}{n}+g[i]*\frac{i}{n}+j]*n}{n-i}$$

然后我们发现$j$这一维其实是无效的,我们只需要知道$j=1$时的答案,所以我们在转移的时候忽略它,直接令$j=1$,并用$f[i]$表示$f[i][1]$,得到:

$$f[i]=f[i+1]+g[i+1]+g[i]*\frac{i}{n-i}+\frac{n}{n-i}$$

然后我们就可以线性时间得到答案了。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 10010
int N;
double g[MAXN],f[MAXN];
int main()
{
scanf("%d",&N);
for (int i=N-1; i>=0; i--) g[i]=g[i+1]+1.0*N/(N-i);
for (int i=N-1; i>=0; i--) f[i]=f[i+1]+g[i+1]+g[i]*1.0*i/(N-i)+1.0*N/(N-i);
printf("%.2lf\n",f[0]);
}

  

码量比思路量不知道小到哪去了!!

【BZOJ-1426】收集邮票 概率与期望DP的更多相关文章

  1. BZOJ 1426--收集邮票(概率与期望&DP)

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 504  Solved: 417[Submit][Status][Discuss] ...

  2. BZOJ 1426 收集邮票 ——概率DP

    $f(i)$表示现在有$i$张,买到$n$张的期望 所以$f(i)=f(i+1)+\frac {n}{n-i}$ 费用提前计算,每张邮票看做一元,然后使后面每一张加1元 $g(i)$表示当前为$i$张 ...

  3. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  4. BZOJ 1426: 收集邮票 [DP 期望 平方]

    传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮 ...

  5. bzoj 1426: 收集邮票【期望dp】

    我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i ...

  6. bzoj 1426:收集邮票 求平方的期望

    显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望. 设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平 ...

  7. bzoj 1426 收集邮票

    f[i]:当前已拥有i种邮票,还需要买的邮票数的期望值. g[i]:当前已拥有i种邮票,还需要的钱的期望值. 每张邮票初始都是1元钱,每买一张邮票,还没购买的邮票每张都涨价1元.  f[i]=1+(n ...

  8. 收集邮票 (概率dp)

    收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...

  9. 【算法学习笔记】概率与期望DP

    本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...

随机推荐

  1. RMAN备份脚本一列分享

    在ORACLE数据库中,RMAN备份的脚本非常多,下面介绍一例shell脚本如何通过RMAN备份,以及FTP上传RMAN备份文件以及归档日志文件的脚本. fullback.sh 里面调用RMAN命令做 ...

  2. 作业配置规范文档[MS SQL]

    作业配置规范文档(MS SQL) 文档类型 MS SQL数据库作业配置规范文档 创建日期 2015-07-30 版本变化 V3.0 修改记录 修改人 修改日期 版本 修改描述 潇湘隐者 2015-08 ...

  3. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  4. 终于开始用github了

    一直以来,github的大名就如雷贯耳.虽然我半年多前就从了解到了这个神奇的网站,而且趁着当时的一时兴趣注册了账户,但是对于那时候的我来说这个网站还是太复杂了点,毕竟半年前的我还没有开始写代码啊,所以 ...

  5. OpenStack 架构 - 每天5分钟玩转 OpenStack(15)

    终于正式进入 OpenStack 部分了. 今天开始,CloudMan 将带着大家一步一步揭开 OpenStack 的神秘面纱. OpenStack 已经走过了 6 个年头. 每半年会发布一个版本,版 ...

  6. android开发之onCreate( )方法详解

    这里我们只关注一句话:This is where you should do all of your normal static set up.其中我们只关注normal static,normal: ...

  7. OpenStack云计算快速入门之一:OpenStack及其构成简介

    原文:http://blog.chinaunix.net/uid-22414998-id-3263551.html OpenStack云计算快速入门(1) 该教程基于Ubuntu12.04版,它将帮助 ...

  8. es6学习笔记2-解构赋值

    解构赋值基本概论就按照一定的模式通过数组或者对象对一组变量进行赋值的过程. 1.通过数组对变量进行赋值: /*通过这种方式赋值要注意左右两边的结构模式要一样,在赋值的时候,根据位置进行赋值对应模式.* ...

  9. 洛谷P1134 阶乘问题[数论]

    题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001, ...

  10. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...