【题解】Luogu CF1051F The Shortest Statement
原题传送门:CF1051F The Shortest Statement
题目大意,给你一个稀疏图,q次查询,查询两点之间距离
边数减点小于等于20
这不是弱智题吗,23forever dalao又开始虐题
作为蒟蒻的我只能在一旁出售烤绿鸟和main包,和大家一起吃西瓜
仔细想想,这题的确是很弱智
先随便找一个生成树,这样就能跑lca了
剩下的几条边的端点跑一下SPFA堆优化dij,用于特判,SPFA已经死了
查询先用lca算一下距离,再暴力枚举这40个端点到两点的距离值和(最多)
就这样完了,没错
程序中还有一些优化,看细节来体会(这题真的弱智)
奉上蒟蒻的代码
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#define N 300005
#define Logn 19
#define M 21
#define inf 1e18
#define ll long long
using namespace std;
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline ll Min(register ll a,register ll b)
{
return a<b?a:b;
}
int n,m,q;
struct edge{
int to,next,w;
}e[N<<1];
int head[N],cnt=0;
set< pair<int,int> >bad;
int tin[N],tout[N],T;
bool u[N];
ll h[N],d[M<<1][N];
int p[Logn][N];
inline void add(register int u,register int v,register int w)
{
e[++cnt]=(edge){v,head[u],w};
head[u]=cnt;
}
inline void dfs(register int v,register int pr)
{
tin[v]=T++;
p[0][v]=pr;
u[v]=true;
for(register int i=1;i<Logn;++i)
p[i][v]=p[i-1][p[i-1][v]];
for(register int i=head[v];i;i=e[i].next)
if(!u[e[i].to])
{
h[e[i].to]=h[v]+e[i].w;
dfs(e[i].to,v);
if(v<e[i].to)
bad.erase(make_pair(v,e[i].to));
else
bad.erase(make_pair(e[i].to,v));
}
tout[v]=T;
}
inline bool isAncestor(register int a,register int b)
{
return tin[a]<=tin[b]&&tout[a]>=tout[b];
}
inline int LCA(register int a,register int b)
{
if(isAncestor(a,b))
return a;
if(isAncestor(b,a))
return b;
for(register int i=Logn-1;i>=0;--i)
if(!isAncestor(p[i][a],b))
a=p[i][a];
return p[0][a];
}
inline void dij(register int st,register ll d[N])
{
set<pair<ll,int> > q;
for(register int i=0;i<n;++i)
d[i]=inf;
d[st]=0;
q.insert(make_pair(d[st],st));
while(!q.empty())
{
int v=q.begin()->second;
q.erase(q.begin());
for(register int i=head[v];i;i=e[i].next)
if(d[e[i].to]>d[v]+e[i].w)
{
q.erase(make_pair(d[e[i].to],e[i].to));
d[e[i].to]=d[v]+e[i].w;
q.insert(make_pair(d[e[i].to],e[i].to));
}
}
}
int main()
{
n=read(),m=read();
for(register int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
--u,--v;
add(u,v,w),add(v,u,w);
}
for(register int v=0;v<n;++v)
for(register int i=head[v];i;i=e[i].next)
if(v<e[i].to)
bad.insert(make_pair(v,e[i].to));
dfs(0,0);
int cpos=0;
int siz=bad.size();
while(!bad.empty())
dij(bad.begin()->first,d[cpos++]),bad.erase(bad.begin());
q=read();
while(q--)
{
int u=read(),v=read();
--u,--v;
int lca=LCA(u,v);
ll ans=h[u]+h[v]-2*h[lca];
for(register int i=0;i<siz;++i)
ans=Min(ans,d[i][u]+d[i][v]);
printf("%lld\n",ans);
}
return 0;
}
【题解】Luogu CF1051F The Shortest Statement的更多相关文章
- CF1051F The Shortest Statement 题解
题目 You are given a weighed undirected connected graph, consisting of n vertices and m edges. You sho ...
- cf1051F. The Shortest Statement(最短路/dfs树)
You are given a weighed undirected connected graph, consisting of nn vertices and mm edges. You shou ...
- [CF1051F]The Shortest Statement
题目大意:给定一张$n$个点$m$条有权边的无向联通图,$q$次询问两点间的最短路 $n\le100000$,$m\le100000$,$1\le100000$,$m$-$n\le20$. 首先看到$ ...
- [CF1051F]The Shortest Statement (LCA+最短路)(给定一张n个点m条有权边的无向联通图,q次询问两点间的最短路)
题目:给定一张n个点m条有权边的无向联通图,q次询问两点间的最短路 n≤100000,m≤100000,m-n≤20. 首先看到m-n≤20这条限制,我们可以想到是围绕这个20来做这道题. 即如果我们 ...
- cf1051F. The Shortest Statement(最短路)
题意 题目链接 题意:给出一张无向图,每次询问两点之间的最短路,满足$m - n <= 20$ $n, m, q \leqslant 10^5$ Sol 非常好的一道题. 首先建出一个dfs树. ...
- CF1051F The Shortest Statement Dijkstra + 性质分析
动态询问连通图任意两点间最短路,单次询问. 显然,肯定有一些巧妙地性质(不然你就发明了新的最短路算法了233)有一点很奇怪:边数最多只比点数多 $20$ 个,那么就可以将这个图看作是一个生成树,上面连 ...
- Codeforces 1051E Vasya and Big Integers&1051F The Shortest Statement
1051E. Vasya and Big Integers 题意 给出三个大整数\(a,l,r\),定义\(a\)的一种合法的拆分为把\(a\)表示成若干个字符串首位相连,且每个字符串的大小在\(l, ...
- [CF1051F]The Shortest Statement_堆优化dij_最短路树_倍增lca
The Shortest Statement 题目链接:https://codeforces.com/contest/1051/problem/F 数据范围:略. 题解: 关于这个题,有一个重要的性质 ...
- codeforces 1051F The Shortest Statement
题目链接:codeforces 1051F The Shortest Statement 题意:\(q\)组询问,求任意两点之间的最短路,图满足\(m-n\leq 20\) 分析:一开始看这道题:fl ...
随机推荐
- js图的数据结构处理----邻链表,广度优先搜索,最小路径,深度优先搜索,探索时间拓扑
//邻居连表 //先加入各顶点,然后加入边 //队列 var Queue = (function(){ var item = new WeakMap(); class Queue{ construct ...
- 从零开始一起学习SLAM | 为什么要学SLAM?
在<零基础小白,如何入门计算机视觉?>中我提到过,计算机视觉的研究目前主要分为两大方向:基于学习的方法和基于几何的方法.其中基于学习的方法最火的就是深度学习,而基于几何方法最火的就是视觉S ...
- ASP.NET MVC4中加入Log4Net日志记录功能
前言 在之前的.NET中,微软还没有提供过像样的日志框架,目前能用的一些框架比如Log4Net.NLog.CommonLogging等,虽然多多少少使用起来有点费劲,但这里还是简单分享一下Log4Ne ...
- java 基础功能
1.str.length();// 获取整个字符串的长度 public class Test { public static void main(String[] args) { String s = ...
- <3>Cocos Creator编辑器基础
Cocos Creator编辑器界面主要窗口包含如下: * 资源管理器窗口 * 场景编辑器窗口 * 层级管理器窗口 * 属性检查器窗口 * 上方功能按钮 * 偏好设置 * 串口输出 * 预览和构建 1 ...
- table 的rolspan和rowspan
如图所示啦,容易让初学者混乱的两个东西仔细看看分析下呢,就比较简单了 <table width="300" border="2"> <tr&g ...
- DatabaseGenerated(转)
在EF中,我们建立数据模型的时候,可以给属性配置数据生成选项DatabaseGenerated,它后有三个枚举值:Identity.None和Computed. Identity:自增长 None:不 ...
- hdu1762 树的上的查询
2015-10-07 20:44:42 题意问的是给了一颗树,然后又1000000次查询u,v,问不在树路径上的点的编号最小值,以1为根 建这颗树,然后在同一棵子树中的点子让就输出1 否则我们记录每个 ...
- xpath ,css
https://docs.scrapy.org/en/latest/intro/tutorial.html xpath @选择属性 .当前目录下选择 //任意路径选择 /bookstore/book ...
- NSThread(II)
非线程安全 //初始化火车票数量.卖票窗口(非线程安全).并开始卖票 - (void)initTicketStatusNotSave { // 1. 设置剩余火车票为 50 self.ticketSu ...