ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.


题目大意

  给定一个有向图,每个点的出度为1。有一种操作可以将一条边的方向翻转,问有多少种不同的操作方案使得操作后图中不存在点数大于1的强连通分量。

  因为图很特殊,所以有比较特殊的计算方法。

  容易发现,对于已经存在的强连通分量,只有全部翻转中间的边和什么都不做的量两种方案不可行,其他都可行。

  对于不在强连通分量内的边,可翻转也可以不翻转。

  然后用dfs找环,用乘法原理乘一乘就好。

Code

 /**
* Codeforces
* Problem#711D
* Accepted
* Time: 62ms
* Memory: 4376k
*/
#include <bits/stdc++.h>
using namespace std; const int M = 1e9 + ; int n;
int cnt = ;
int ric = ;
int *suf;
int *vid;
int *bel; int qpow(int a, int pos) {
int rt = , pa = a;
for (; pos; pos >>= , pa = pa * 1ll * pa % M)
if (pos & )
rt = rt * 1ll * pa % M;
return rt;
} inline void init() {
scanf("%d", &n);
suf = new int[(n + )];
vid = new int[(n + )];
bel = new int[(n + )];
for (int i = ; i <= n; i++)
scanf("%d", suf + i);
memset(vid, , sizeof(int) * (n + ));
memset(bel, , sizeof(int) * (n + ));
} int dfs(int node, int id) {
vid[node] = ++cnt;
bel[node] = id;
int e = suf[node];
if (vid[e])
return (bel[e] == id) ? (vid[node] - vid[e] + ) : ();
return dfs(e, id);
} int ans = ;
inline void solve() {
for (int i = , s; i <= n; i++)
if (!vid[i]) {
s = dfs(i, i);
if(s)
ans = (ans * 1ll * ((qpow(, s) + M - ) % M)) % M;
ric += s;
}
ans = (ans * 1ll * qpow(, n - ric)) % M;
printf("%d\n", ans);
} int main() {
init();
solve();
return ;
}

Codeforces 711D Directed Roads - 组合数学的更多相关文章

  1. codeforces 711D Directed Roads(DFS)

    题目链接:http://codeforces.com/problemset/problem/711/D 思路:由于每个点出度都为1,所以没有复杂的环中带环.DFS遍历,若为环则有2^k-2种,若为链则 ...

  2. 【图论】Codeforces 711D Directed Roads

    题目链接: http://codeforces.com/problemset/problem/711/D 题目大意: 给一张N个点N条有向边的图,边可以逆向.问任意逆向若干条边使得这张图无环的方案数( ...

  3. CodeForces 711D Directed Roads (DFS判环+计数)

    题意:给定一个有向图,然后你可能改变某一些边的方向,然后就形成一种新图,让你求最多有多少种无环图. 析:假设这个图中没有环,那么有多少种呢?也就是说每一边都有两种放法,一共有2^x种,x是边数,那么如 ...

  4. CodeForces 711D Directed Roads

    计数,模拟. 首先观察一下给出的图的特点: $1.$一定存在环. $2.$可能存在多个环. 我们对每个环计算方案数,假设环$C$上包含$x$条边,那么把环$C$破坏掉的方案数有${2^x} - 2$种 ...

  5. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  6. Code Forces 711D Directed Roads

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. codeforces 711D D. Directed Roads(dfs)

    题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  8. 【34.40%】【codeforces 711D】Directed Roads

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. Directed Roads CodeForces - 711D (基环外向树 )

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

随机推荐

  1. MyBatis基础入门《九》ResultMap自动匹配

    MyBatis基础入门<九>ResultMap自动匹配 描述: Mybatis执行select查询后,使用ResultMap接收查询的数据结果. 实体类:TblClient.java 接口 ...

  2. 监控Tomcat

    监控Tomcat 无论是使用Zabbix.还是jconsole等其他工具,当需要监控Tomcat时,需对Tomcat进行jmx配置.此处以Linux系统为例,配置Tomcat. 注意: 下文中出现的: ...

  3. jQuery-切换2

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. Windows server 2008 R2实现多用户远程连接 (转)

    经常使用远程桌面的朋友可能会注意到,Windows server 2008 R2中,远程桌面最多只允许两个人远程连接,第三个人就无法连接过去,但是生产环境中有一些服务器可能有许多人需要连接上去,而微软 ...

  5. UML之状态机图

    状态机图 基本概念: 状态机图,UML 1.x规范中称状态图,是一个展示状态机的图. 状态机图基本上就是一个状态机中元素的投影,这也就意味着状态机图包括状态机的所有特征.状态机图显示了一个对象如何根据 ...

  6. html5-progress和meter用法

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  7. Windows10上安装Keras 和 TensorFlow-GPU

    安装环境: Windows 10 64bit GPU: GeForce gt 720 Python: 3.5.3 CUDA: 8 首先下载Anaconda3的Win10 64bit版,安装Python ...

  8. 获取MyBatis

    点击:获取MyBatis https://github.com/mybatis/mybatis-3/releases 点击:进入中文MyBatis的说明文档 http://www.mybatis.or ...

  9. CSS背景与边框属性-----box-shadow

    box-shadow:none | <shadow> [ , <shadow> ]*   <shadow> = inset? && <leng ...

  10. .net web site 和 web application 的区别

    web application 会把所有的代码编译打包成单一的库文件(.dll). web site 不会对整个的代码进行编译,在运行时须要哪一段代码就编译哪段代码.这导致web site 上线后,如 ...