Derek解读Bytom源码-孤块管理
作者:Derek
简介
Github地址:https://github.com/Bytom/bytom
Gitee地址:https://gitee.com/BytomBlockchain/bytom
本章介绍bytom代码孤块管理
作者使用MacOS操作系统,其他平台也大同小异
Golang Version: 1.8
孤块介绍
什么是孤块
当节点收到了一个有效的区块,而在现有的主链中却未找到它的父区块,那么这个区块被认为是“孤块”。父区块是指当前区块的PreviousBlockHash字段指向上一区块的hash值。
接收到的孤块会被存储在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。
孤块出现的原因
当两个或多个区块在很短的时间间隔内被挖出来,节点有可能会以不同的顺序接收到它们,这个时候孤块现象就会出现。
我们假设有三个高度分别为100、101、102的块,分别以102、101、100的颠倒顺序被节点接收。此时节点将102、101放入到孤块管理缓存池中,等待彼此的父块。当高度为100的区块被同步进来时,会被验证区块和交易,然后存储到区块链上。这时会对孤块缓存池进行递归查询,根据高度为100的区块找到101的区块并存储到区块链上,再根据高度为101的区块找到102的区块并存储到区块链上。
孤块源码分析
孤块管理缓存池结构体
protocol/orphan_manage.go
type OrphanManage struct {
orphan map[bc.Hash]*types.Block
prevOrphans map[bc.Hash][]*bc.Hash
mtx sync.RWMutex
}
func NewOrphanManage() *OrphanManage {
return &OrphanManage{
orphan: make(map[bc.Hash]*types.Block),
prevOrphans: make(map[bc.Hash][]*bc.Hash),
}
}
- orphan 存储孤块,key为block hash,value为block结构体
- prevOrphans 存储孤块的父块
- mtx 互斥锁,保护map结构在多并发读写状态下保持数据一致
添加孤块到缓存池
func (o *OrphanManage) Add(block *types.Block) {
blockHash := block.Hash()
o.mtx.Lock()
defer o.mtx.Unlock()
if _, ok := o.orphan[blockHash]; ok {
return
}
o.orphan[blockHash] = block
o.prevOrphans[block.PreviousBlockHash] = append(o.prevOrphans[block.PreviousBlockHash], &blockHash)
log.WithFields(log.Fields{"hash": blockHash.String(), "height": block.Height}).Info("add block to orphan")
}
当一个孤块被添加到缓存池中,还需要记录该孤块的父块hash。用于父块hash的查询
查询孤块和父孤块
func (o *OrphanManage) Get(hash *bc.Hash) (*types.Block, bool) {
o.mtx.RLock()
block, ok := o.orphan[*hash]
o.mtx.RUnlock()
return block, ok
}
func (o *OrphanManage) GetPrevOrphans(hash *bc.Hash) ([]*bc.Hash, bool) {
o.mtx.RLock()
prevOrphans, ok := o.prevOrphans[*hash]
o.mtx.RUnlock()
return prevOrphans, ok
}
删除孤块
func (o *OrphanManage) Delete(hash *bc.Hash) {
o.mtx.Lock()
defer o.mtx.Unlock()
block, ok := o.orphan[*hash]
if !ok {
return
}
delete(o.orphan, *hash)
prevOrphans, ok := o.prevOrphans[block.PreviousBlockHash]
if !ok || len(prevOrphans) == 1 {
delete(o.prevOrphans, block.PreviousBlockHash)
return
}
for i, preOrphan := range prevOrphans {
if preOrphan == hash {
o.prevOrphans[block.PreviousBlockHash] = append(prevOrphans[:i], prevOrphans[i+1:]...)
return
}
}
}
删除孤块的过程中,同时删除父块
孤块处理逻辑
protocol/block.go
func (c *Chain) processBlock(block *types.Block) (bool, error) {
blockHash := block.Hash()
if c.BlockExist(&blockHash) {
log.WithFields(log.Fields{"hash": blockHash.String(), "height": block.Height}).Info("block has been processed")
return c.orphanManage.BlockExist(&blockHash), nil
}
if parent := c.index.GetNode(&block.PreviousBlockHash); parent == nil {
c.orphanManage.Add(block)
return true, nil
}
if err := c.saveBlock(block); err != nil {
return false, err
}
bestBlock := c.saveSubBlock(block)
// ...
}
processBlock函数处理block块加入区块链上之前的过程。
c.BlockExist判断当前block块是否存在于区块链上或是否存在孤块缓存池中,如果存在则返回。
c.index.GetNode判断block块的父节点是否存在。如果在现有的主链中却未找到它的父区块则将block块添加到孤块缓存池。
c.saveBlock走到了这一步说明,block父节点是存在于区块链,则将block块存储到区块链。该函数会验证区块和交易有效性。
saveSubBlock 代码如下:
func (c *Chain) saveSubBlock(block *types.Block) *types.Block {
blockHash := block.Hash()
prevOrphans, ok := c.orphanManage.GetPrevOrphans(&blockHash)
if !ok {
return block
}
bestBlock := block
for _, prevOrphan := range prevOrphans {
orphanBlock, ok := c.orphanManage.Get(prevOrphan)
if !ok {
log.WithFields(log.Fields{"hash": prevOrphan.String()}).Warning("saveSubBlock fail to get block from orphanManage")
continue
}
if err := c.saveBlock(orphanBlock); err != nil {
log.WithFields(log.Fields{"hash": prevOrphan.String(), "height": orphanBlock.Height}).Warning("saveSubBlock fail to save block")
continue
}
if subBestBlock := c.saveSubBlock(orphanBlock); subBestBlock.Height > bestBlock.Height {
bestBlock = subBestBlock
}
}
return bestBlock
}
saveSubBlock 在孤块缓存池中查询是否存在当前区块的下一个区块。比如当前区块高度为100,则在孤块缓存池中查询是否有区块高度为101的区块。如果存在则将101区块存储到区块链并从孤块缓存池中删除该区块。
saveSubBlock是一个递归函数的实现。目的是为了寻找最深叶子节点的递归方式。比如当前区块高度为100的,递归查询出高度为99、98、97等高度的区块。
Derek解读Bytom源码-孤块管理的更多相关文章
- Derek解读Bytom源码-持久化存储LevelDB
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-创世区块
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-Api Server接口服务
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-启动与停止
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-protobuf生成比原核心代码
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-P2P网络 upnp端口映射
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- Derek解读Bytom源码-P2P网络 地址簿
作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...
- 入口开始,解读Vue源码(一)-- 造物创世
Why? 网上现有的Vue源码解析文章一搜一大批,但是为什么我还要去做这样的事情呢?因为觉得纸上得来终觉浅,绝知此事要躬行. 然后平时的项目也主要是Vue,在使用Vue的过程中,也对其一些约定产生了一 ...
- 鸿蒙OS的系统调用是如何实现的? | 解读鸿蒙源码
本文将首先带您回顾"系统调用"的概念以及它的作用,然后从经典的Hello World开始,逐行代码层层分析--鸿蒙OS的系统调用是如何实现的. 写在前面 9月10号 华为开发者大会 ...
随机推荐
- python 将一个JSON 字典转换为一个Python 对象
将一个JSON 字典转换为一个Python 对象例子 >>> s='{"name":"apple","shares":50 ...
- rabbitmq和redis用作消息队列的区别
将redis发布订阅模式用做消息队列和rabbitmq的区别: 可靠性redis :没有相应的机制保证消息的可靠消费,如果发布者发布一条消息,而没有对应的订阅者的话,这条消息将丢失,不会存在内存中:r ...
- SQL数据分析概览——Hive、Impala、Spark SQL、Drill、HAWQ 以及Presto+druid
转自infoQ! 根据 O’Reilly 2016年数据科学薪资调查显示,SQL 是数据科学领域使用最广泛的语言.大部分项目都需要一些SQL 操作,甚至有一些只需要SQL. 本文涵盖了6个开源领导者: ...
- 文件缓冲区在fork后复制
场景:父进程trace进程A,当A进程fork子进程B时,让父进程也fork子进程去trace子进程B,用于trace的进程将被trace的进程发生的系统调用号通过fprintf存入各自文件中 问题: ...
- SQL SERVER镜像配置(包含见证服务器)
镜像简介 重要说明:保持数据库镜像运行.如果您关闭数据库镜像,则必须执行完全备份并还原数据库以重建数据库镜像. 一. 简介 SQL SERVER 2005镜像基于日志同步,可良好实现故障转移. ...
- windows无法远程连接linux
网络模式 修改对应的NAT模式,子网地址的前三位要与window,internet协议版本里的IP地址的前三位一致.
- 虚拟继承C++
C++中虚拟继承的概念 为了解决从不同途径继承来的同名的数据成员在内存中有不同的拷贝造成数据不一致问题,将共同基类设置为虚基类.这时从不同的路径继承过来的同名数据成员在内存中就只有一个拷贝,同一个函数 ...
- HTMLCollection 对象和NodeList 对象
获取html元素有三种方法,其中通过类名和标签获取的结果为一个HTMLCollection对象. HTMLCollection对象可以理解为一个包含html元素的数组(但不是数组),可以通过索引[ ] ...
- 【题解】Luogu P1648 看守
原题传送门:P1648 看守 这题目让求得的是d维( d <=4 )空间中n个点( 2 <= N <= 1000000 )之间最大的哈曼顿距离 模拟,emm,能拿30分,不错 因为d ...
- Python爬虫(一)——豆瓣下图书信息
爬虫目的: 随着近年互联网的发展,网络上的信息飞速数量增长.在庞大的数据面前想要获得期望的信息往往如同大海捞针.通过合理的筛选,在百万甚至数亿计的数据中找到所需信息,无疑有着非常大的意义. 在豆瓣网下 ...