LuoguP3792 由乃与大母神原型和偶像崇拜
题目地址
题解
由乃题还是毒瘤啊orz
显然的一个结论是,如果保证不重复,维护区间min,max然后判断max-min+1==r-l+1是否成立即可
但是有重复
于是就要orz题解区的各位大佬了
各种神奇的判重方法是怎么想出来的qwq
这里列举几种
1.维护区间平方和+对大质数取模防止爆
这种我写了但是不知道为什么取模了就挂
2.维护区间平方和
直接暴力维护...然后就过了..?我写的就是这种
这里大概说一下:
就是维护一下区间min,max,平方和,这些线段树都可以做到
然后首先判断一下是否\(max-min+1==r-l+1\)
这是第一重判定
然后第二重判定用公式和实际平方和判
\]
什么?你不知道公式?
\(\sum_{i=1}^{n}{i^2}=\frac{n(n+1)(2n+1)}{6}\)
但是公式只有70。这样子乘会爆
于是我们暴力枚举求平方和
然后就过了
(虽然很慢就是了)
#include <bits/stdc++.h>
#define ll long long
const ll inf = 5e18;
const ll mod = 1e9 + 7;
const ll inv6 = 166666668;
#define il inline
namespace io {
#define in(a) a=read()
#define out(a) write(a)
#define outn(a) out(a),putchar('\n')
#define I_int ll
inline I_int read() {
I_int x = 0 , f = 1 ; char c = getchar() ;
while( c < '0' || c > '9' ) { if( c == '-' ) f = -1 ; c = getchar() ; }
while( c >= '0' && c <= '9' ) { x = x * 10 + c - '0' ; c = getchar() ; }
return x * f ;
}
char F[ 200 ] ;
inline void write( I_int x ) {
if( x == 0 ) { putchar( '0' ) ; return ; }
I_int tmp = x > 0 ? x : -x ;
if( x < 0 ) putchar( '-' ) ;
int cnt = 0 ;
while( tmp > 0 ) {
F[ cnt ++ ] = tmp % 10 + '0' ;
tmp /= 10 ;
}
while( cnt > 0 ) putchar( F[ -- cnt ] ) ;
}
#undef I_int
}
using namespace io ;
using namespace std ;
#define N 500010
int n, m;
ll a[N];
namespace seg_tree {
struct tree {
int l, r;
ll mx, mn;
ll sum;
} t[N << 2];
#define lc (rt << 1)
#define rc (rt << 1 | 1)
#define mid ((l + r) >> 1)
void pushup(int rt) {
t[rt].mn = min(t[lc].mn, t[rc].mn);
t[rt].mx = max(t[lc].mx, t[rc].mx);
t[rt].sum = (t[lc].sum + t[rc].sum);
}
void build(int l, int r, int rt) {
t[rt].l = l; t[rt].r = r; if(l == r) {t[rt].mn = t[rt].mx = a[l]; t[rt].sum = a[l]*a[l]; return;}
build(l, mid, lc); build(mid + 1, r, rc); pushup(rt);
}
#define l t[rt].l
#define r t[rt].r
void upd(int L, ll c, int rt) {
if(l == r) { t[rt].mn = t[rt].mx = c; t[rt].sum = c * c; return; }
if(L <= mid) upd(L, c, lc); if(L > mid) upd(L, c, rc); pushup(rt);
}
ll query1(int L, int R, int rt) { ll ans = 0; //平方和
if(L <= l && r <= R) return t[rt].sum;
if(L <= mid) ans = (ans + query1(L, R, lc)); if(R > mid) ans = (ans + query1(L, R, rc));
return ans;
}
ll query2(int L, int R, int rt) { ll ans = inf; //最小
if(L <= l && r <= R) return t[rt].mn;
if(L <= mid) ans = min(ans, query2(L, R, lc)); if(R > mid) ans = min(ans, query2(L, R, rc));
return ans;
}
ll query3(int L, int R, int rt) { ll ans = -inf; //最大
if(L <= l && r <= R) return t[rt].mx;
if(L <= mid) ans = max(ans, query3(L, R, lc)); if(R > mid) ans = max(ans, query3(L, R, rc));
return ans;
}
#undef l
#undef r
#undef mid
#undef lc
#undef rc
}using namespace seg_tree;
ll calc(ll l, ll r) {
ll ans = 0;
for(ll i = l; i <= r; i ++) {
ans = ans + i * i;
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
n = read(), m = read();
for(int i = 1; i <= n; i ++) a[i] = read();
build(1, n, 1);
for(int i = 1; i <= m; i ++) {
int opt = read(), l = read(), r = read();
if(opt == 1) upd(l, r, 1);
else {
ll mx = query3(l, r, 1), mn = query2(l, r, 1);
// printf("Case#%d:max=%lld,min=%lld\n",i,mx,mn);
if(mx - mn != (r - l)) {puts("yuanxing"); continue;}
if(query1(l, r, 1) == calc(mn, mx)) puts("damushen");
else puts("yuanxing");
}
}
return 0;
}
3.平衡树+线段树
orz数据结构爷,不过貌似会爆空间
这里放个链接
LuoguP3792 由乃与大母神原型和偶像崇拜的更多相关文章
- AC日记——由乃与大母神原型和偶像崇拜 洛谷 P3792
由乃与大母神原型和偶像崇拜 思路: 逆元+线段树维护和+线段树维护平方和+线段树维护最大最小值: 代码: #include <bits/stdc++.h> using namespace ...
- 洛谷P3792 由乃与大母神原型和偶像崇拜
P3792 由乃与大母神原型和偶像崇拜 题目背景 由乃最近没事干,去研究轻拍学去了 就是一个叫做flip flappers,轻拍翻转小膜女的番 然后研究的过程中她看到了一个叫做大母神原型的东西 大母神 ...
- 【洛谷P3792】由乃与大母神原型和偶像崇拜
题目大意:维护一个序列,支持单点修改和查询一段区间能不能组成连续的一段数. 题解:查询区间能不能组成一段连续的数这个操作较为复杂,很难在较小时间复杂度内直接维护.这里采用线段树维护区间哈希的策略,即: ...
- p3792 由乃与大母神原型和偶像崇拜(思维+线段树)
要求 1.修改x位置的值为y 2.查询区间l,r是否可以重排为值域上连续的一段 可以,很lxl 然后一开始思考合并区间,但是发现可以重排序,GG 然后想了特殊性质,比如求和,但是显然可以被叉 这时候我 ...
- 「Luogu 3792」由乃与大母神原型和偶像崇拜
更好的阅读体验 Portal Portal1: Luogu Description 给你一个序列\(a\) 每次两个操作: 修改\(x\)位置的值为\(y\): 查询区间\([l, r]\)是否可以重 ...
- 強大的javascrpt原型链學習
一个自带隐式的 __proto__ 属性[implicit __proto__ property],指向foo的原型 這有點類似實現C# 繼承作用 a類的公共東西,給b和c類共用 var a = { ...
- Cocos引擎现身 IndiePrize 全球游戏开发者大会!Cocos的两大男神成为压轴嘉宾
2019全球游戏开发者大会今天11月10日,在深圳南山海上世界文化艺术中心拉开帷幕.除了号称精品游戏"奥斯卡"的IndiePrize将在现场展开最终角逐,更有来自美国.俄罗斯.澳大 ...
- 《Xenogears》(异度装甲)隐含的原型与密码
<Xenogears>(异度装甲)隐含的原型与密码 X 彩虹按:一种高次元的“生命体”,因“事故”被抓来当成“超能源”,其实那不只是“无限的能源”而已,“它”是有意志的!在我们眼里看来,这 ...
- 十大Intellij IDEA快捷键
转载:http://blog.csdn.net/dc_726/article/details/42784275 Intellij IDEA中有很多快捷键让人爱不释手,stackoverflow上也有一 ...
随机推荐
- BestCoder Round #55 ($)
C 构造一个矩阵,然后采用矩阵快速幂 #include <iostream> #include <algorithm> #include <string.h> #i ...
- Nginx技术研究系列6-配置详解
前两篇文章介绍了Nginx反向代理和动态路由: Ngnix技术研究系列1-通过应用场景看Nginx的反向代理 Ngnix技术研究系列2-基于Redis实现动态路由 随着研究的深入,很重要的一点就是了解 ...
- scrapy框架 + selenium 爬取豆瓣电影top250......
废话不说,直接上代码..... 目录结构 items.py import scrapy class DoubanCrawlerItem(scrapy.Item): # 电影名称 movieName = ...
- 文本tfidf
文本分类tf:词的频率 idf:逆文档频率 代码实例: # tf idf from sklearn.feature_extraction.text import TfidfVectorizer imp ...
- Python中*args和**kwargs 的简单使用
# 在函数定义中使用*args和kwargs传递可变长参数. *args用作传递非命名键值可变长参数列表(位置参数); kwargs用作传递键值可变长参数列表# *args表示任何多个无名参数,它是一 ...
- Spring Boot(九):定时任务
Spring Boot(九):定时任务 一.pom包配置 pom包里面只需要引入springboot starter包即可 <dependencies> <dependency> ...
- go 字符串反转(倒序)
似乎没什么好办法,string的话也得需要先转换成rune再反转再转成string package main import ( "fmt" ) func reverseString ...
- python 爬取历史天气
python 爬取历史天气 官网:http://lishi.tianqi.com/luozhuangqu/201802.html # encoding:utf-8 import requests fr ...
- Python学习基础(二)——集合 深浅拷贝 函数
集合 # 集合 ''' 集合是无序不重复的 ''' # 创建列表 l = list((1, 1, 1)) l1 = [1, 1, 1] print(l) print(l1) print("* ...
- 01:MongoDB基础
1.1 MongoDB简介 1.特点 1. MongoDB的提供了一个面向文档存储,操作起来比较简单和容易. 2. 你可以在MongoDB记录中设置任何属性的索引 (如:FirstName=" ...