From the perspective of analytical geometry, an interval is composed of infinitely many points, while after the length of an interval was defined, it is intuitively to believe its length is the sum of the length of all points within it, then it becomes meaningful to ask the length of a point and the relationship between the length of a point and the length of an interval?

Considering the singleton case ${\displaystyle [a,a]=\{a\}}$, the length of the interval is 0, since the single point $a$ is included in the interval, thus the length of a point cannot exceed the length of that interval, while the concept of length cannot be negative, so the length of a point is 0.

Another perspective of figuring out the length of a point is using the nested intervals theorem.

Considering the point included in each of these intervals, since there always exists interval whose length could be smaller than each positive real number, unless the length of a point is 0, or else the point couldn't be included in each of these intervals.

http://math.stackexchange.com/questions/1936865/what-is-the-length-of-a-point-on-the-real-number-line

After figuring out the length of a point, this moved us further to sum the length of each point within the interval, since there are infinitely many points within the interval, it is error-prone to represent the length of all points within the interva by the series

$$0+0+0+...$$

for there are uncontablely infinite many points within the interval, the series only computed out the sum of the length of contablely infinite many points within the interval. While this failure may inspire us to ask whether if the sum of the length of uncontablely infinite many points equal to the interval length, also No!

The Cantor set contains an uncountably infinite number of points, while the total length of all these points is still 0.

https://en.wikipedia.org/wiki/Cantor_set

Your original belief--the length of an interval is the sum of the length of all points within it, destroyed by the conclusion conducted from Cantor set, you may still want to dig the topic further, see the measure theory! I will come back to update this article once I have deep insight about this topic!

从一个点的长度是多少说起(Talking started from the length of a point on the real number line)的更多相关文章

  1. delphi 判断一个数组的长度用 Length 还是 SizeOf ?

    判断一个数组的长度用 Length 还是 SizeOf ?最近发现一些代码, 甚至有一些专家代码, 在遍历数组时所用的数组长度竟然是 SizeOf(arr); 这不合适! 如果是一维数组.且元素大小是 ...

  2. Linux 在 i 节点表中的磁盘地址表中,若一个文件的长度是从磁盘地址表的第 1 块到第 11 块 解析?

    面试题: 在 i 节点表中的磁盘地址表中,若一个文件的长度是从磁盘地址表的第 1 块到第 11块,则该文件共占有 B  块号.A 256 B 266 C 11 D 256×10 linux文件系统是L ...

  3. SqlSever基础 len函数 返回一个字符串的长度

    镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...

  4. lintcode:Length of Last Word 最后一个单词的长度

    题目: 最后一个单词的长度 给定一个字符串, 包含大小写字母.空格' ',请返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 样例 给定 s = "Hello World& ...

  5. HW—字符串最后一个单词的长度,单词以空格隔开。

    描述 计算字符串最后一个单词的长度,单词以空格隔开. 知识点 字符串,循环 运行时间限制 0M 内存限制 0 输入 一行字符串,长度小于128. 输出 整数N,最后一个单词的长度. 样例输入 hell ...

  6. OJ题:字符串最后一个单词的长度

    题目描述 计算字符串最后一个单词的长度,单词以空格隔开. 输入描述: 一行字符串,非空,长度小于5000. 输出描述: 整数N,最后一个单词的长度. 输入例子: hello world 输出例子: 5 ...

  7. [Swift]LeetCode58. 最后一个单词的长度 | Length of Last Word

    Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the l ...

  8. 华为oj之字符串最后一个单词的长度

    题目: 字符串最后一个单词的长度 热度指数:9697 时间限制:1秒 空间限制:32768K 本题知识点: 字符串 题目描述 计算字符串最后一个单词的长度,单词以空格隔开. 输入描述: 一行字符串,非 ...

  9. leetCode58. 最后一个单词的长度

    给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 说明:一个单词是指由字母组成,但不包含任何空格的字符串. 示例: 输入: &quo ...

随机推荐

  1. 关于NSString的@""和nil时的判断方法

    1.NSString *str = @"";该语句代表是一个空串,并且不为nil,占有内存空间 2.NSString *str = nil;该语句代表,str不指向任何对象,指针指 ...

  2. linux每日命令(18):whereis命令

    whereis命令用于查找文件. 该指令会在特定目录中查找符合条件的文件.这些文件应属于原始代码.二进制文件,或是帮助文件. 该指令只能用于查找二进制文件.源代码文件和man手册页,一般文件的定位需使 ...

  3. 【XMPP】XMPP类型

    1.ConnectionConfiguration 作为用于与XMPP服务建立连接的配置.它能配置:连接是否使用TLS,SASL加密. 包含内嵌类:ConnectionConfiguration.Se ...

  4. 【iCore1S 双核心板_FPGA】例程十五:基于I2C的ARM与FPGA通信实验

    实验现象: 核心代码: int main(void) { int i,n; ]; ]; HAL_Init(); system_clock.initialize(); led.initialize(); ...

  5. File 类的 getCanonicalFile( ) 和 getAbsoluteFile( ) 区别

    一.打开java.io.File源码,看下两个方法的区别 getAbsoluteFile public File getAbsoluteFile() { String absPath = getAbs ...

  6. 编写自定义Yeoman生成器简述

    1. 安装生成器Yeoman提供了generator-generator方便快速编写自己的生成器. 安装: npm install -g generator-generator运行: yo gener ...

  7. Android WiFi 获取国家码

    记录一下Android获取国家码的方式 Wifi 国家码获取途径 1.DefaultCountryTablefield in WCNSS_qcom_wlan_nv.bin-read during dr ...

  8. Nginx系列二:(Nginx Rewrite 规则、Nginx 防盗链、Nginx 动静分离、Nginx+keepalived 实现高可用)

    一.Nginx Rewrite 规则 1. Nginx rewrite规则 Rewrite规则含义就是某个URL重写成特定的URL(类似于Redirect),从某种意义上说为了美观或者对搜索引擎友好, ...

  9. HTML5超酷秒表动画 可暂停和重置秒表

    关于HTML5和CSS3的时钟应用在之前我们已经分享过不少了,还有一些HTML5的日期选择应用.今天我们要分享一款基于HTML5和CSS3的圆盘秒表动画,秒表可以精确到0.001秒,并且可以在计时过程 ...

  10. System.Runtime.InteropServices.COMException 检索COM类工厂中CLSID{xxxxxxxxx}的组件时失败解决方法

    iis7.5中设定应用程序池中<进程模型>中<标识>为localSystem 提示:System.Runtime.InteropServices.COMException: 命 ...