uoj#213. 【UNR #1】争夺圣杯
单调栈求出每个位置x左边第一个大于它的位置L[x]和右第一个不小于它的位置R[x],于是矩形L[x]<=l<=x<=r<=R[x]内的点(l,r)对应的区间[l,r]的最值为x位置的值,这个矩形内的点只对答案数组的二阶差分的四个位置有影响,可以全部统计后再求两次前缀和得到答案。
#include<bits/stdc++.h>
typedef long long i64;
const int N=1e6+,P=;
char ib[N*],*ip=ib;
int _(){
int x=;
while(*ip<)++ip;
while(*ip>)x=x*+*ip++-;
return x;
}
int n,a[N],ss[N],ls[N],rs[N],sp=;
i64 s[N];
int main(){
fread(ib,,sizeof(ib),stdin);
n=_();
for(int i=;i<=n;++i)a[i]=_();
a[]=a[n+]=0x7fffffff;
for(int i=;i<=n+;++i){
while(sp&&a[ss[sp]]<a[i])rs[ss[sp--]]=i-;
ss[++sp]=i;
}
sp=;
for(int i=n;i>=;--i){
while(sp&&a[ss[sp]]<=a[i])ls[ss[sp--]]=i+;
ss[++sp]=i;
}
for(int i=;i<=n;++i){
int x=i-ls[i]+,y=rs[i]-i+;
if(x>y)std::swap(x,y);
s[]+=a[i];
s[x]-=a[i];
s[y]-=a[i];
s[x+y]+=a[i];
}
s[]%=P;
for(int i=;i<n;++i)(s[i]+=s[i-])%=P;
for(int i=;i<n;++i)(s[i]+=s[i-])%=P;
int ans=;
for(int i=;i<n;++i)ans^=s[i]<?s[i]+P:s[i];
printf("%d\n",ans);
return ;
}
uoj#213. 【UNR #1】争夺圣杯的更多相关文章
- 【uoj#213】[UNR #1]争夺圣杯 单调栈+差分
题目描述 给出一个长度为 $n$ 的序列,对于 $1\sim n$ 的每一个数 $i$ ,求这个序列所有长度为 $i$ 的子区间的最大值之和,输出每一个 $i$ 的答案模 $998244353$ 后异 ...
- [UOJ213][UNR #1]争夺圣杯
uoj description 一个长为\(n\)的序列,给定一个参数\(m\),求所有长度为\(m\)的区间的最大值之和. 对于所有的\(m\in[1,n]\)你都需要分别求出答案然后异或起来. \ ...
- UOJ#213——【UNR #1】争夺圣杯
1.题意:给一个序列,枚举长度x,然后在这个序列中所有长度为x的区间,我们求出这些区间的最大值之和并取模,最后将所有的异或起来就好啦 2.分析:听说好多人写的 ,特来写一发 的算法骗访问量 话说这个东 ...
- uoj#213. 【UNR #1】争夺圣杯(单调栈)
传送门 我们枚举每一个元素,用单调栈做两遍计算出它左边第一个大于它的位置\(l[i]\)和右边第一个大于它的位置\(r[i]\),那么一个区间以它为最大值就意味着这个区间的左端点在\([l[i]+1, ...
- 【UOJ UNR #1】争夺圣杯
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 考虑直接对每个数字,统计它会产生的贡献. 单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等) 假设左 ...
- A. 【UNR #1】争夺圣杯
题解: 一道比较水的题目 按照最一般的思路离散化后枚举最大值 然后考虑最大值的贡献 会发现需要分类讨论一下 发现对一段k的影响是等差数列 所以可以用线段树维护差分数组
- uoj213 【UNR #1】争夺圣杯
题目 设\(f_i\)表示所有长度为\(i\)的区间的最大值的和,求\(\bigoplus \sum_{i=1}^nf_i\) 不难发现随机数据非常好做 由于一个随机序列的前缀最大值期望只会变化\(\ ...
- UOJ.311.[UNR#2]积劳成疾(DP)
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...
- uoj【UNR #3】To Do Tree 【贪心】
题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...
随机推荐
- PAT-1084(外观数列 ) && PAT-1085 (PAT单位排行)
1084 利用字符串string的可加性 #include <bits/stdc++.h> using namespace std; int main () { int x,n; cin ...
- bulma入门
http://www.ruanyifeng.com/blog/2017/10/bulma.html
- HDU 2058:The sum problem(数学)
The sum problem Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- LSOF查看linux中文件打开情况
如何查看linux中文件打开情况 前言 我们都知道,在linux下,“一切皆文件”,因此有时候查看文件的打开情况,就显得格外重要,而这里有一个命令能够在这件事上很好的帮助我们-它就是lsof. lin ...
- (20)模型层 -ORM之msql 基于双下划线的跨表查询(一对一,一对多,多对多)
基于对象的跨表查询是子查询 基于双下划线的查询是连表查询 PS:基于双下划线的跨表查询 正向按字段,反向按表名小写 一对一 需求:查询lqz这个人的地址# 正向查询ret = models.Autho ...
- gcd(1,n)+gcd(2,n)....gcd(n-1,n); Uva11426
#include<bits/stdc++.h> #define int long long using namespace std; ; int phi[maxn]; int prime[ ...
- Go Example--通道选择器
package main import ( "fmt" "time" ) func main() { c1 := make(chan string) c2 := ...
- MySQL--查看内存信息
常见查看内存信息命令 ## 使用free -m命令查看 free -m ## 使用cat /proc/meminfo 查看 cat /proc/meminfo ## 使用dmidecode命令查看 d ...
- heptio scanner kubernetes 集群诊断工具部署说明
heptio scanner 是一款k8s 集群状态的诊断工具,还是很方便的,但是有一点就是需要使用google 的镜像 参考地址 https://scanner.heptio.com/ 部署 kub ...
- 22 初始模块 random time collections functools
一 .初始模块 1.从⼩到⼤的顺序: ⼀条代码 < 语句块 < 代码块(函数, 类) < 模块 2.引入模块的方式 ① import 模块 ② from 模块 im ...