LG4980 【模板】Polya定理
题意
题目描述
给定一个$n$个点,$n$条边的环,有$n$种颜色,给每个顶点染色,问有多少种本质不同的染色方案,答案对$10^9+7$取模
注意本题的本质不同,定义为:只需要不能通过旋转与别的染色方案相同。
输入输出格式
输入格式:
第一行输入一个$t$,表示有$t$组数据
第二行开始,一共$t$行,每行一个整数$n$,意思如题所示。
输出格式:
共$t$行,每行一个数字,表示染色方案数对$10^9+7$取模后的结果
输入输出样例
说明
$$n \leq 10^9$$
$$t \leq 10^3$$
分析
先找不动点个数公式。考虑循环移动\(i\)位这个置换,把珠子循环编号。由于移动后编号要重复,所以最大的编号一定是\(\textrm{lcm}(i,m)\)。所以一个循环里面的珠子个数就是\(\frac{\textrm{lcm}(i,m)}{i}=\frac{n}{\gcd(i,n)}\)。所以共有\(\gcd(i,n)\)个循环。因此不动点个数是\(n^{\gcd(i,n)}\)
所以答案式为
=\frac 1n\sum_{d|n}\varphi(\frac nd)n^d \\
=\sum_{d|n}\varphi(d) n^{\frac nd-1}
\]
我并不知道先枚约数再算欧拉函数的复杂度是多少,反正约数个数怎么也达不到\(O(\sqrt{n})\)的上界。
即使\(2^3*3*5*7*11*13*17*19*23=892371480\),这个数也只有1024个约数,小于\(\sqrt{892371480}=29872.587433\)。
int phi(int n){
int re=n;
for(int i=2;i*i<=n;++i)if(n%i==0){
re=re/i*(i-1);
while(n%i==0) n/=i;
}
if(n>1) re=re/n*(n-1);
return re;
}
void Polya(){
int n=read<int>(),ans=0;
for(int i=1;i*i<=n;++i)if(n%i==0){
ans=add(ans,mul(phi(i),fpow(n,n/i-1)));
if(i*i!=n) ans=add(ans,mul(phi(n/i),fpow(n,i-1)));
}
printf("%d\n",ans);
}
int main(){
// freopen("LG4980.in","r",stdin),freopen("LG4980.out","w",stdout);
for(int t=read<int>();t--;) Polya();
return 0;
}
宝石纪念币
跟上面那道题一样。不过多了些要求:共17中颜色,每种都要用上。保留120位数。
那么简单容斥,并实现高精度即可。
https://cyaron.blog.luogu.org/solution-p2162
我果然写不来高精度……算是做个高精练习吧。
不想容斥的话也可以用矩阵乘法:https://www.cnblogs.com/ccz181078/p/7122566.html?utm_source=itdadao&utm_medium=referral
CO int mod=1e9;int n; // qn+r
inter node(int x){
inter a(15);
a[0]=x%n,a[1]=x/n;
return a;
}
inter operator+(CO inter&a,CO inter&b){
inter ans(15);
ans[0]=a[0]+b[0];
if(ans[0]>=n) ++ans[1],ans[0]-=n;
for(int i=1;i<=14;++i){
ans[i]+=a[i]+b[i];
if(ans[i]>=mod){
if(i+1<=14) ++ans[i+1];
ans[i]-=mod;
}
}
return ans;
}
inter operator-(CO inter&a,CO inter&b){ // a>=b
inter ans(15);
ans[0]=a[0]-b[0];
if(ans[0]<0) --ans[1],ans[0]+=n;
for(int i=1;i<=14;++i){
ans[i]+=a[i]-b[i];
if(ans[i]<0){
if(i+1<=14) --ans[i+1];
ans[i]+=mod;
}
}
return ans;
}
inter operator*(CO inter&a,CO inter&b){
vector<int128> ans(15);
ans[0]=(int128)a[0]*b[0];
ans[1]+=ans[0]/n,ans[0]%=n;
for(int i=1;i<=14;++i){
ans[i]+=(int128)a[i]*b[0]+(int128)a[0]*b[i];
for(int j=1;j<=i;++j) ans[i]+=(int128)a[j]*b[i+1-j]*n;
if(i+1<=14) ans[i+1]+=ans[i]/mod;
ans[i]%=mod;
}
return inter(ans.begin(),ans.end());
}
inter pow(inter a,int b){
inter ans(15);ans[0]=1;
for(;b;b>>=1,a=a*a)
if(b&1) ans=ans*a;
return ans;
}
int phi(int n){
int ans=n;
for(int i=2;i*i<=n;++i)if(n%i==0){
ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
if(n>1) ans=ans/n*(n-1);
return ans;
}
int C[20][20];
int main(){
read(n);
if(n<17){
for(int i=1;i<=120;++i) putchar('0');
puts("");
return 0;
}
for(int i=0;i<=17;++i){
C[i][0]=C[i][i]=1;
for(int j=1;j<i;++j) C[i][j]=C[i-1][j-1]+C[i-1][j];
}
inter ans(15);
for(int d=1;d*d<=n;++d)if(n%d==0){
inter sum(15);
for(int i=1;i<=17;i+=2) sum=sum+node(C[17][i])*pow(node(i),d);
for(int i=2;i<=17;i+=2) sum=sum-node(C[17][i])*pow(node(i),d);
sum=sum*node(phi(n/d));
ans=ans+sum;
if(n/d==d) continue;
sum=node(0);
for(int i=1;i<=17;i+=2) sum=sum+node(C[17][i])*pow(node(i),n/d);
for(int i=2;i<=17;i+=2) sum=sum-node(C[17][i])*pow(node(i),n/d);
sum=sum*node(phi(d));
ans=ans+sum;
}
printf("%03d",ans[14]%1000); // edit 1
for(int i=13;i>=1;--i) printf("%09d",ans[i]);
puts("");
return 0;
}
LG4980 【模板】Polya定理的更多相关文章
- P4980 【模板】Polya定理
思路 polya定理的模板题,但是还要加一些优化 题目的答案就是 \[ \frac{\sum_{i=1}^n n^{gcd(i,n)}}{n} \] 考虑上方的式子怎么求 因为\(gcd(i,n)\) ...
- [洛谷P4980]【模板】Polya定理
题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- HDU 3923 Invoker 【裸Polya 定理】
参考了http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 的模板 对于每一种染色,都有一个等价群,例如旋转, ...
- Necklace of Beads (polya定理的引用)
Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n &l ...
- poj1286 Necklace of Beads—— Polya定理
题目:http://poj.org/problem?id=1286 真·Polya定理模板题: 写完以后感觉理解更深刻了呢. 代码如下: #include<iostream> #inclu ...
- poj2154 Color ——Polya定理
题目:http://poj.org/problem?id=2154 今天学了个高端的东西,Polya定理... 此题就是模板,然而还是写了好久好久... 具体看这个博客吧:https://blog.c ...
- Necklace of Beads(polya定理)
http://poj.org/problem?id=1286 题意:求用3种颜色给n个珠子涂色的方案数.polya定理模板题. #include <stdio.h> #include &l ...
- poj 1286 polya定理
Necklace of Beads Description Beads of red, blue or green colors are connected together into a circu ...
- 等价类计数:Burnside引理 & Polya定理
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...
随机推荐
- react中用pace.js
pace.js不支持npm, 所以只能直接下载下来,当作普通js引入 我在用的时候怎么都引不到组件里去用 后来终于找到方法了,直接上图了 1.先将pace文件下载来放在公共js目录下,pace.les ...
- 关于静态资源是否应该放到WEB-INF目录
首先,css/js/html没有必要放在WEB-INF下. 最终这些会被原封不动的展现在客户端,所以访问安全根本就不会成为问题. jsp放在web-inf下,原因主要有两个 远古时代的模式会把业务逻辑 ...
- Win10访问不到XP共享的解决:
不知道别人的是怎么解决. 反正我这么解决了. 我的win10笔记本,是使用windows帐户登陆的.可以同步很多东西. 同事的电脑是台式老古董XP. 扫描不到网上邻居,手动\\ip也访问不到. 最后安 ...
- vsts 管理 持续集成 跟自动化测试
1.代理池: 在服务器上,打开你的TFS Web站点,并转到管理页的代理池页面.如: https://www.cnblogs.com/atwind/p/5486881.html 低版本无法生成高版本. ...
- curl 返回头部和正文
头部string(195) "HTTP/1.1 200 OK Server: openresty/1.7.7.1 Date: Wed, 05 Sep 2018 13:18:33 GMT Co ...
- Vue.js与WdatePicker日历控件冲突问题的解决方案
问题:同时使用Vue.js与WdatePicker时,双向绑定的日期字段获取不到界面输入的值,而且别的字段的值改变后,日期控件的内容会被清空 原因:WdatePicker不是Vue的插件,不能响应Vu ...
- Linux下的shell与make
Linux下的shell与make 一.shell 1.1 什么是shell ● 用户与Linux的接口 ● 命令解释器 ● 支持多用户 ● 支持复杂的编程语言 ● Shell有很多种,如:csh,t ...
- 引用google字体
1.很简单直接 @import url(http://fonts.font.im/css?family=Shadows+Into+Light); 引入页面即可 2. 使用: font-fami ...
- AOP记录方法的执行时间
作用AOP监控方法的运行时间如下: @Component @Aspect public class LogAop { private Logger log = LoggerFactory.getLog ...
- SpringMvc使用FastJson做为json的转换器(注解方式)
在使用XML方式配置项目,使用fastjson做为Json转换器时通常的在XML内添加如下的配置: <mvc:message-converters register-defaults=" ...