在做单细胞的时候,有很多基因属于noise,就是变化没有规律,或者无显著变化的基因。在后续分析之前,我们需要把它们去掉。

以下是一种找出highly variable gene的方法:

The feature selection procedure is based on the largest difference between the observed coefficient of variation (CV) and the predicted CV (estimated by a non-linear noise model learned from the data) See Figure S1C. In particular, Support Vector Regression (SVR, Smola and Vapnik, 1997) was used for this purpose (scikit-learn python implementation, default parameters with gamma = 0.06; Pedregosa et al., 2011).

#Pre-filtering
df_f = df_merge.copy()
df_f = df_f.ix[sum(df_f>=1, 1)>=5,:] # is at least 1 in X cells
df_f = df_f.ix[sum(df_f>=2, 1)>=2,:] # is at least 2 in X cells
df_f = df_f.ix[sum(df_f>=3, 1)>=1,:] # is at least 2 in X cells #Fitting
mu = df_f.mean(1).values
sigma = df_f.std(1, ddof=1).values
cv = sigma/mu
score, mu_linspace, cv_fit , params = fit_CV(mu,cv, 'SVR', svr_gamma=0.005) #Plotting
def plot_cvmean():
figure()
scatter(log2(mu),log2(cv), marker='o', edgecolor ='none',alpha=0.1, s=5)
mu_sorted = mu[argsort(score)[::-1]]
cv_sorted = cv[argsort(score)[::-1]]
scatter(log2(mu_sorted[:thrs]),log2(cv_sorted[:thrs]), marker='o', edgecolor ='none',alpha=0.15, s=8, c='r')
plot(mu_linspace, cv_fit,'-k', linewidth=1, label='$Fit$')
plot(linspace(-9,7), -0.5*linspace(-9,7), '-r', label='$Poisson$')
ylabel('log2 CV')
xlabel('log2 mean')
grid(alpha=0.3)
xlim(-8.6,6.5)
ylim(-2,6.5)
legend(loc=1, fontsize='small')
gca().set_aspect(1.2) plot_cvmean() #Adjusting plot

对每一个基因在不同细胞中的表达量的mean和CV散点图,通过SVR拟合出noise的曲线。

通过the largest difference between the observed coefficient of variation (CV) and the predicted CV (estimated by a non-linear noise model learned from the data)就能找出highly variable gene了。

  

highly variable gene | 高变异基因的选择 | feature selection | 特征选择的更多相关文章

  1. 选择屏幕(Selection Screen)

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  2. ISLR系列:(4.1)模型选择 Subset Selection

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  3. 选择排序 Selection Sort

    选择排序 Selection Sort 1)在数组中找最小的数与第一个位置上的数交换: 2)找第二小的数与第二个位置上的数交换: 3)以此类推 template<typename T> / ...

  4. 排序算法 - 选择排序(selection sort)

    选择排序(Selection sort)跟插入排序一样,也是O(n^2)的复杂度,这个排序方式也可以用我们的扑克牌来解释. 概念 桌面上有一堆牌,也是杂乱无章的,现在我们想将牌由小到大排序,如果使用选 ...

  5. 简单选择排序 Selection Sort 和树形选择排序 Tree Selection Sort

    选择排序 Selection Sort 选择排序的基本思想是:每一趟在剩余未排序的若干记录中选取关键字最小的(也可以是最大的,本文中均考虑排升序)记录作为有序序列中下一个记录. 如第i趟选择排序就是在 ...

  6. 排序算法--选择排序(Selection Sort)_C#程序实现

    排序算法--选择排序(Selection Sort)_C#程序实现 排序(Sort)是计算机程序设计中的一种重要操作,也是日常生活中经常遇到的问题.例如,字典中的单词是以字母的顺序排列,否则,使用起来 ...

  7. 跳跃空间(链表)排序 选择排序(selection sort),插入排序(insertion sort)

    跳跃空间(链表)排序 选择排序(selection sort),插入排序(insertion sort) 选择排序(selection sort) 算法原理:有一筐苹果,先挑出最大的一个放在最后,然后 ...

  8. 【ABAP系列】SAP ABAP选择屏幕(SELECTION SCREEN)事件解析

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP选择屏幕(SEL ...

  9. android 开发高仿QQ表情选择、输入框

    首先大家看效果: 用到的文件有(源码文件有,只包含表情.输入框等有关文件,工程项目是公司项目,恕不公开啦): res: drawable/face_del_icon.xml drawable/iv_f ...

随机推荐

  1. cJSON库的简单介绍及使用

    转载:http://www.cnblogs.com/liunianshiwei/p/6087596.html JSON 语法是 JavaScript 对象表示法语法的子集.数据在键/值对中:数据由逗号 ...

  2. Click()与Submit()

    <input type="button" /> 定义可点击的按钮,但没有任何行为.如果你不写javascript 的话,按下去什么也不会发生. button 类型常用于 ...

  3. js 根据对象属性对数组进行按字母排序

    $scope.input.sort(compare('ticked','name')); var compare = function(ticked, name){ return function(a ...

  4. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  5. nginx重新编译添加ssl模块

    https://www.cnblogs.com/zhming26/p/6278667.html https nginx配置 找到安装nginx的源码根目录,如果没有的话下载新的源码 http://ng ...

  6. (转)awesome-text-summarization

    awesome-text-summarization 2018-07-19 10:45:13 A curated list of resources dedicated to text summari ...

  7. (zhuan) 126 篇殿堂级深度学习论文分类整理 从入门到应用

    126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打 ...

  8. (zhuan) 深度学习全网最全学习资料汇总之模型介绍篇

    This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058& ...

  9. 高级定时器TIM1&TIM8

                                               高级定时器 初识stm32高级定时器:      (1)高级控制定时器(TIM1 和 TIM8)和通用定时器在基本 ...

  10. 【译】第45节---EF6-索引属性

    原文:http://www.entityframeworktutorial.net/entityframework6/index-attribute-in-code-first.aspx Entity ...