转化:

RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换

DataFrame/Dataset转RDD:

这个转换很简单

val rdd1=testDF.rdd
val rdd2=testDS.rdd RDD转DataFrame: import spark.implicits._
val testDF = rdd.map {line=>
(line._1,line._2)
}.toDF("col1","col2") 一般用元组把一行的数据写在一起,然后在toDF中指定字段名 RDD转Dataset:

import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = rdd.map {line=>
Coltest(line._1,line._2)
}.toDS 可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可 Dataset转DataFrame: 这个也很简单,因为只是把case class封装成Row import spark.implicits._
val testDF = testDS.toDF DataFrame转Dataset: import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest] 这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
特别注意: 在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用

package dataframe


import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}


//
// Explore interoperability between DataFrame and Dataset. Note that Dataset
// is covered in much greater detail in the 'dataset' directory.
//
object DatasetConversion {


case class Cust(id: Integer, name: String, sales: Double, discount: Double, state: String)


case class StateSales(state: String, sales: Double)


def main(args: Array[String]) {
val spark =
SparkSession.builder()
.appName("DataFrame-DatasetConversion")
.master("local[4]")
.getOrCreate()


import spark.implicits._


// create a sequence of case class objects
// (we defined the case class above)
val custs = Seq(
Cust(1, "Widget Co", 120000.00, 0.00, "AZ"),
Cust(2, "Acme Widgets", 410500.00, 500.00, "CA"),
Cust(3, "Widgetry", 410500.00, 200.00, "CA"),
Cust(4, "Widgets R Us", 410500.00, 0.0, "CA"),
Cust(5, "Ye Olde Widgete", 500.00, 0.0, "MA")
)


// Create the DataFrame without passing through an RDD
val customerDF : DataFrame = spark.createDataFrame(custs)
//
// println("*** DataFrame schema")
//
// customerDF.printSchema()
//
// println("*** DataFrame contents")
//
// customerDF.show()

// +---+---------------+--------+--------+-----+
//| id| name| sales|discount|state|
//+---+---------------+--------+--------+-----+
//| 1| Widget Co|120000.0| 0.0| AZ|
//| 2| Acme Widgets|410500.0| 500.0| CA|
//| 3| Widgetry|410500.0| 200.0| CA|
//| 4| Widgets R Us|410500.0| 0.0| CA|
//| 5|Ye Olde Widgete| 500.0| 0.0| MA|
//+---+---------------+--------+--------+-----+


//
// println("*** Select and filter the DataFrame")
//
val smallerDF =
customerDF.select("sales", "state").filter($"state".equalTo("CA"))
//
// smallerDF.show()

//
// +--------+-----+
//| sales|state|
//+--------+-----+
//|410500.0| CA|
//|410500.0| CA|
//|410500.0| CA|
//+--------+-----+

///////////////////////////////////////////////////////////////////////////////////

// Convert it to a Dataset by specifying the type of the rows -- use a case
// class because we have one and it's most convenient to work with. Notice
// you have to choose a case class that matches the remaining columns.
// BUT also notice that the columns keep their order from the DataFrame --
// later you'll see a Dataset[StateSales] of the same type where the
// columns have the opposite order, because of the way it was created.


val customerDS : Dataset[StateSales] = smallerDF.as[StateSales]
//
// println("*** Dataset schema")
//
// customerDS.printSchema()
//
// println("*** Dataset contents")
//
// customerDS.show()


// Select and other operations can be performed directly on a Dataset too,
// but be careful to read the documentation for Dataset -- there are
// "typed transformations", which produce a Dataset, and
// "untyped transformations", which produce a DataFrame. In particular,
// you need to project using a TypedColumn to gate a Dataset.


// val verySmallDS : Dataset[Double] = customerDS.select($"sales".as[Double])
//
// println("*** Dataset after projecting one column")
//
// verySmallDS.show()

//
//+--------+
//| sales|
//+--------+
//|410500.0|
//|410500.0|
//|410500.0|
//+--------+


// If you select multiple columns on a Dataset you end up with a Dataset
// of tuple type, but the columns keep their names.
val tupleDS : Dataset[(String, Double)] =
customerDS.select($"state".as[String], $"sales".as[Double])
//
// println("*** Dataset after projecting two columns -- tuple version")
//
// tupleDS.show()

//
//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


// You can also cast back to a Dataset of a case class. Notice this time
// the columns have the opposite order than the last Dataset[StateSales]
// val betterDS: Dataset[StateSales] = tupleDS.as[StateSales]
//
// println("*** Dataset after projecting two columns -- case class version")
//
// betterDS.show()

//
//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


// Converting back to a DataFrame without making other changes is really easy
// val backToDataFrame : DataFrame = tupleDS.toDF()
//
// println("*** This time as a DataFrame")
//
// backToDataFrame.show()
//

//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


//
// // While converting back to a DataFrame you can rename the columns
val renamedDataFrame : DataFrame = tupleDS.toDF("MyState", "MySales")


println("*** Again as a DataFrame but with renamed columns")


renamedDataFrame.show()


// +-------+--------+
//|MyState| MySales|
//+-------+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-------+--------+


}
}

 

RDD、DataFrame、Dataset三者三者之间转换的更多相关文章

  1. APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL

    What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...

  2. spark的数据结构 RDD——DataFrame——DataSet区别

    转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接 ...

  3. sparkSQL中RDD——DataFrame——DataSet的区别

    spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型 ...

  4. RDD, DataFrame or Dataset

    总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.Da ...

  5. spark rdd df dataset

    RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有parti ...

  6. byte[] 、Bitmap与Drawbale 三者直接的转换

    经常遇到这种类似头疼的问题 byte[] .Bitmap与Drawbale 三者直接的转换 1.byte[] ->Bitmap Bitmap Bitmap = BitmapFactory.dec ...

  7. Spark入门之DataFrame/DataSet

    目录 Part I. Gentle Overview of Big Data and Spark Overview 1.基本架构 2.基本概念 3.例子(可跳过) Spark工具箱 1.Dataset ...

  8. C#中对象,字符串,dataTable、DataReader、DataSet,对象集合转换成Json字符串方法。

    C#中对象,字符串,dataTable.DataReader.DataSet,对象集合转换成Json字符串方法. public class ConvertJson { #region 私有方法 /// ...

  9. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

随机推荐

  1. confd template src格式和 templates 语法

    Template Resources Template resources are written in TOML and define a single template resource. Tem ...

  2. minikube k8 ingress--https://kubernetes.io/docs

    https://ehlxr.me/2018/01/12/kubernetes-minikube-installation/[Kubernetes 学习笔记之 MiniKube 安装 in CHINA] ...

  3. 制作STM32开发板要买的电子元器件

    1.STM32F103VET6芯片 2.电阻(10K.1.5K.1K.510R.47R.27R.0R) 3.电容(104.4.7uf.1uf.22uf.10pf.) 4.二极管(普通二极管D1206. ...

  4. document数据路由

    (1)document数据路由的理解:我们知道,一个index的数据会被分为多片,每片都在一个shard中,所以说,一个document,只能存在于一个shard中.当客户端创建document的时候 ...

  5. 基于jQuery实现的Ajax 验证用户名唯一性

    基于jQuery实现的Ajax 验证用户名唯一性 前端jsp页面代码 <tr> <th><span class="requiredField"> ...

  6. Finecms模板标签调用小结 方便快速入门

    最近接了一个单子客户要求用finecms进行建站,由于也是php代码,也可以直接调用相关函数,所以上手相对比较快,ytkah总结了一些常用的函数方便您快速入门Finecms.一个网站一般由主页.栏目页 ...

  7. Python3学习之路~4.2 迭代器

    可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的generator fun ...

  8. Linux软件包安装

    rpm命令 命名方式  name-VERSION-release.arch.rpm 常见的arch: x86:   i386  i486    i586   i686 x86_64:   x64    ...

  9. 香港低价linux虚拟主机,

    https://www.sugarhosts.com/zh-cn/hosting/shared-web-hosting Shared Baby 36 个月 ¥ 26.99 19 99 · / 月 续费 ...

  10. K-means &K-medoids 聚类

    k-平均值算法对孤立点很敏感!因为具有特别大的值的对象可能显著地影响数据的分布. k-中心点(k-Medoids): 不采用簇中对象的平均值作为参照点, 而是选用簇中位置最中心的对象, 即中心点(me ...