题面:P3178 [HAOI2015]树上操作

好像其他人都嫌这道题太容易了懒得讲,好吧那我讲。

题解:第一个操作和第二个操作本质上是一样的,所以可以合并。唯一值得讲的点就是:第二个操作要求把某个节点 x 为根的子树中所有点的点权都增加 a,我们可以发现一个子树中的结点在线段树中会是连续的一段,而这段数最后一个就是seg值(seg数组在Dfs2中有进行预处理,seg[x]:x结点在线段树中的位置)最大的那个。所以可以在Dfs2中多预处理一个tu[x]表示以x为根的子树中seg值最大的结点的seg值。接下来进行操作二时Update(1,seg[x],tu[x])就可以了。总体挺模版的,而且由于询问只询问x到根的和,所以不需要预处理dep数组。记得开ll。

代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
inline ll rd(){
ll x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const ll maxn=,maxq=;
ll N,Q,num_edge=,edge_head[maxn],W[maxn],a,b,seg[maxn],rev[maxn],fa[maxn];
ll top[maxn],son[maxn],size[maxn],tu[maxn],X,A,Ans,o;
struct Edge{
int to,nx;
}edge[maxn<<];
inline void Add_edge(int from,int to){
edge[++num_edge].nx=edge_head[from];
edge[num_edge].to=to;
edge_head[from]=num_edge;
return;
}
inline void Dfs1(int x,int f){
fa[x]=f;
size[x]=;
for(int i=edge_head[x];i;i=edge[i].nx){
int y=edge[i].to;
if(y!=f){
Dfs1(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]])son[x]=y;
}
}
return;
}
inline void Dfs2(int x){
tu[x]=seg[];
if(son[x]){
int y=son[x];
seg[y]=++seg[];//seg[x]:x在线段树中的下标
rev[seg[]]=y;
top[y]=top[x];
Dfs2(y);
tu[x]=max(tu[x],tu[y]);
}
for(int i=edge_head[x];i;i=edge[i].nx){
int y=edge[i].to;
if(top[y]==){
seg[y]=++seg[];
rev[seg[]]=y;
top[y]=y;
Dfs2(y);
tu[x]=max(tu[x],tu[y]);
}
}
return;
}
struct Tree{
ll sum,l,r,flag;
}t[maxn<<];
inline void Build(int k,int l,int r){
t[k].l=l;t[k].r=r;
if(l==r){
t[k].sum=W[rev[l]];
return;
}
int mid=(l+r)>>,ls=k<<,rs=k<<|;
Build(ls,l,mid);Build(rs,mid+,r);
t[k].sum=t[ls].sum+t[rs].sum;
return;
}
inline void Pushdown(int k){
if(t[k].flag){
int ls=k<<,rs=k<<|,ln=t[ls].r-t[ls].l+,rn=t[rs].r-t[rs].l+;
t[ls].sum+=t[k].flag*ln;t[rs].sum+=t[k].flag*rn;
t[ls].flag+=t[k].flag;t[rs].flag+=t[k].flag;
t[k].flag=;
}
return;
}
inline void Update(int k,int ql,int qr,ll s){
int l=t[k].l,r=t[k].r;
if(ql<=l&&r<=qr){
t[k].sum+=s*(r-l+);
t[k].flag+=s;
return;
}
Pushdown(k);
int mid=(l+r)>>,ls=k<<,rs=k<<|;
if(ql<=mid)Update(ls,ql,qr,s);
if(qr>mid)Update(rs,ql,qr,s);
t[k].sum=t[ls].sum+t[rs].sum;
return;
}
inline void Query(int k,int ql,int qr){
int l=t[k].l,r=t[k].r;
if(ql<=l&&r<=qr){
Ans+=t[k].sum;
return;
}
Pushdown(k);
int mid=(l+r)>>,ls=k<<,rs=k<<|;
if(ql<=mid)Query(ls,ql,qr);
if(qr>mid)Query(rs,ql,qr);
return;
}
inline ll Ask(int x){
int fx=top[x];
Ans=;
while(fx!=){
Query(,seg[fx],seg[x]);
x=fa[fx];
fx=top[x];
}
Query(,,seg[x]);
return Ans;
}
int main(){
N=rd();Q=rd();
for(int i=;i<=N;i++)W[i]=rd();
for(int i=;i<N;i++){
a=rd();b=rd();
Add_edge(a,b);
Add_edge(b,a);
}
Dfs1(,);
seg[]=seg[]=rev[]=top[]=;
Dfs2();
Build(,,N);
while(Q--){
o=rd();
if(o==||o==){
X=rd();A=rd();
if(o==)Update(,seg[X],seg[X],A);
else Update(,seg[X],tu[X],A);
}
else{
X=rd();
printf("%lld\n",Ask(X));
}
}
return ;
}

By:AlenaNuna

树剖||树链剖分||线段树||BZOJ4034||Luogu3178||[HAOI2015]树上操作的更多相关文章

  1. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  2. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  3. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  4. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  5. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  6. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  7. 【bzoj2325】[ZJOI2011]道馆之战 树链剖分+线段树区间合并

    题目描述 给定一棵树,每个节点有上下两个格子,每个格子的状态为能走或不能走.m次操作,每次修改一个节点的状态,或询问:把一条路径上的所有格子拼起来形成一个宽度为2的长方形,从起点端两个格子的任意一个开 ...

  8. [HDU3710] Battle Over Cities [树链剖分+线段树+并查集+kruskal+思维]

    题面 一句话题意: 给定一张 N 个点, M 条边的无向连通图, 每条边上有边权 w . 求删去任意一个点后的最小生成树的边权之和. 思路 首先肯定要$kruskal$一下 考虑$MST$里面去掉一个 ...

  9. 【bzoj1036】树的统计[ZJOI2008]树链剖分+线段树

    题目传送门:1036: [ZJOI2008]树的统计Count 这道题是我第一次打树剖的板子,虽然代码有点长,但是“打起来很爽”,而且整道题只花了不到1.5h+,还是一遍过样例!一次提交AC!(难道前 ...

随机推荐

  1. 深入理解JS执行细节(写的很精辟)

    来源于:http://www.cnblogs.com/onepixel/p/5090799.html javascript从定义到执行,JS引擎在实现层做了很多初始化工作,因此在学习JS引擎工作机制之 ...

  2. swift常用第三方库

    网络 Alamofire:http网络请求事件处理的框架. Moya:这是一个基于Alamofire的更高层网络请求封装抽象层. Reachability.swift:用来检查应用当前的网络连接状况. ...

  3. SQL语句调优三板斧

    改装有顺序------常开的爱车下手 你的系统中有成千上万的语句,那么优化语句从何入手呢 ? 当然是系统中运行最频繁,最核心的语句了.废话不多说,上例子: 这是一天的语句执行情况,里面柱状图表示的是对 ...

  4. 11G新特性 -- RMAN Multisection Backups

    Oracle 11g支持以sections的方式来备份和还原数据文件.在section级别进行备份,被称作multisection backup(多段备份).section是一个数据文件中连续的块.m ...

  5. system函数遇到的问题

     这几天调程序(嵌入式linux),发现程序有时就莫名其妙的死掉,每次都定位在程序中不同的system()函数,直接在shell下输入system()函数中调用的命令也都一切正常.就没理这个bug,以 ...

  6. 利用jsPDF有效减轻报表型应用服务器的IO负载

    1.利用jsPDF在客户端浏览器上生成pdf文档 使用这种方法可以有效减轻服务器的压力,但是对于国际化,此库任然存在的问题:该库不支持unicode,生成中文文档会乱码,官方也有描述这个问题,详情请参 ...

  7. NodeJs相关系列文章

    1.图片上传之FileAPI与NodeJs 2.NodeJs之调试 3.CentOS下使用NVM 4.NodeJs之进程守护 5.Ubuntu下使用nvm 6.NodeJs之pm2 7.NodeJs之 ...

  8. runtime MethodSwizzle 实践之扩展 NIAttributedLabel

    runtime MethodeSwizzle 提供 简单的方法交换已知类的  Method IMP. Method 可以是 外部可访问的 public 或者 private Method .所谓的属性 ...

  9. batch,iteration,epoch 什么意思

    深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取b ...

  10. ESXi创建磁盘命令

    [root@esx421 SAN]# vmkfstools -d thick -a lsilogic -c 10G lun00.vmdk Incorrect disk option "thi ...