K最近邻kNN-学习笔记
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 24 09:34:32 2019 1. 翼尾花数据
2. 用 KNeighborsClassifier """ # -*- coding:utf-8 -*-
import numpy as np
from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris
iris = load_iris() #载入数据
features, labels = np.array(iris.data), np.array(pd.Categorical.from_codes(iris.target, iris.target_names).tolist()) #多个连续自变量 和 一个离散因变量
feature_names = iris.feature_names from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(features,labels,test_size =0.33,shuffle=True,random_state=42)
#shuffle随机 random_state设定随机种子 test_size测试数据占比33% def accuracy(test_labels, pred_lables):
correct = np.sum(test_labels == pred_lables)
n = len(test_labels)
return float(correct) / n knn = KNeighborsClassifier(n_neighbors=5)
y_test_pre = knn.fit(x_train, y_train).predict(x_test) print(accuracy(y_test_pre, y_test))
# 0.98
改进点:
1. 根据最近的K个值 的距离对最终结果,进行加权。
2. 通过先验知识,对训练数据进行筛选,缩小训练样本,提高样本质量,有利于提高计算速度。
3. 变量尽量少,这样可以提供速度。
优点:
1. 算法原理非常简单: 用 欧式距离最近(或曼哈顿距离)的K个样本点的分类中的众数,作为预测分类。
2. 便于并行计算。
3. 可以做 分类、也可以连续变量拟合预测
缺点:
1. 自变量必须是连续性,并且做好了归一化等处理,方便测量距离。
2. 对于连续性因变量,只能做插值预测,不适合做外推预测。
3. 分类新实例开销大,每次对一个测试样本,需要用到几乎全部的训练样本数据,分别计算距离
4. 会考虑所有属性/自变量。导致计算量大。
kNN(K-Nearest Neighbor)最邻近规则分类
K最近邻kNN-学习笔记的更多相关文章
- kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...
- K最近邻(KNN,k-Nearest Neighbor)准确理解
K最近邻(KNN,k-Nearest Neighbor)准确理解 用了之后,发现我用的都是1NN,所以查阅了一下相关文献,才对KNN理解正确了,真是丢人了. 下图中,绿色圆要被决定赋予哪个类,是红色三 ...
- KNN学习笔记
简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法. 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. 工 ...
- K-means、KNN学习笔记
1.K-means:聚类算法,无监督 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….dat ...
- bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]
1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 转载: scikit-learn学习之K最近邻算法(KNN)
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
- 学习笔记之k-nearest neighbors algorithm (k-NN)
k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...
- opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR
阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...
随机推荐
- set_index() pandas
set_index DataFrame可以通过set_index方法,可以设置单索引和复合索引. DataFrame.set_index(keys, drop=True, append=False, ...
- Tomcat定义虚拟主机案例
Tomcat定义虚拟主机案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.准备环境 1>.创建web程序的根目录 [root@yinzhengjie ~]# mkdir ...
- Hive记录-hive权限控制
在使用Hive的元数据配置权限之前必须现在hive-site.xml中配置两个参数,配置参数如下: <property> <name>hive.security.authori ...
- PHP5.5+Nginx1.9
1. 安装Nginx:http://www.cnblogs.com/vurtne-lu/p/7010065.html 2. 编译安装 [root@zabbix opt]# wget http://cn ...
- 谈谈你对MVC的理解
MVC 模式 MVC 模式代表 Model-View-Controller(模型-视图-控制器) 模式.这种模式用于应用程序的分层开发. Model(模型) - 模型代表一个存取数据的对象或 JAVA ...
- Ubuntu(16.04.2)学习笔记(一)如何解决dpkg: error processing install-info
一.服务器安装软件是出现以下的错误信息: www@TinywanAliYun:~$ sudo apt-get install letsencrypt Reading package lists... ...
- 使用Spring时web.xml中的配置
使用Spring时web.xml中的配置: <?xml version="1.0" encoding="UTF-8"?> <web-app x ...
- centos7 卸载rpm安装的包
1.查看已装包 rpm -qa | grep pgpool 2.卸载包 rpm -e 包名 3.示例(卸载pgpool) [root@VM_145_153_centos etc]# rpm -qa | ...
- ps知识集锦
1.工具箱 移动工具 [V]矩形.椭圆选框工具 [M]套索.多边形套索.磁性套索 [L]快速选择工具.魔棒工具 [W] 裁剪.透视裁剪.切片.切片选择工具 [C]吸管.颜色取样器.标尺.注释.12 ...
- java 调用windows的COM组件举例(使用JACOB)
java 调用windows的COM组件举例(使用JACOB) (转自这里) 最近公司需要做一个效果,开发一个程序能在程序运行时打开microsoft office的相关软件,实时写入,然后能关闭,你 ...