HDU4372 Buildings
@(HDU)[Stirling數, 排列組合]
Problem Description
There are N buildings standing in a straight line in the City, numbered from 1 to N. The heights of all the buildings are distinct and between 1 and N. You can see F buildings when you standing in front of the first building and looking forward, and B buildings when you are behind the last building and looking backward. A building can be seen if the building is higher than any building between you and it.
Now, given N, F, B, your task is to figure out how many ways all the buildings can be.
Input
First line of the input is a single integer T (T<=100000), indicating there are T test cases followed.
Next T lines, each line consists of three integer N, F, B, (0<N, F, B<=2000) described above.
Output
For each case, you should output the number of ways mod 1000000007(1e9+7).
Sample Input
2
3 2 2
3 2 1
Sample Output
2
1
Solution
好吧, 做這題時我是直接看中文翻譯的 ---- 但是, 當我看到這題原文的時候, 我還是不禁要吐槽出題人的英語水平: 題目描述都是什麼鬼 .. 狗屁不通, 表達的意思完全就不對好嗎 ..
言歸正傳, 先 腦補 翻譯 一下題意:
\(n\)个房子在一条线上(\(n \le 2000\)),高度分别为\(1\)~\(n\),现在需要将房子这样放置:从最左往右能看到\(F\)个房子,从最右往左能看到\(B\)个房子,能看到的条件是 两者之间的房子都要低于这个房子.问这样的方案数.
解法也並不算複雜:
因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那么在其左边还有\(f-1\)个能看见,在其右边还有\(b-1\)个,能看见 .. 所以可以这样将题目转化: 将除最高楼之外的\(n-1\)个楼,分成\(f-1+b-1\) 组,在最高楼左边\(f-1\) 组,在其右边\(b-1\)组,那么分成\(f-1+b-1\) 组 就是第一类Stirling数.\(s[n-1][f-1+b-1]\) .. 将这\(f-1+b-1\) 任意放在最高的楼房的左边和右边, 顺序是确定的, 两边分别的数量也是确定的, 因此组合数为\(C_{f - 1 + b - 1}^{f - 1}\)
故: 答案為$$ans = s[n - 1][f - 1 + b - 1] * c[f - 1 + b - 1][f - 1]$$
Hint: 輸入的數據可能會不合法, 要加以特判
if(f + b - 2 > n)
puts("0");
代碼:
#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
}
const int N = 1 << 11;
const int MOD = (int)1e9 + 7;
long long stir[N][N];
int c[N][N];
int main()
{
stir[0][0] = 1;
for(int i = 1; i < N; i ++)
stir[0][i] = (long long)0;
for(long long i = 1; i < N; i ++)
{
stir[i][0] = (long long)0;
for(int j = 1; j <= i; j ++)
stir[i][j] = ((i - 1) * stir[i - 1][j] % MOD + stir[i - 1][j - 1]) % MOD;
}
memset(c, 0, sizeof(c));
c[0][0] = 1;
for(int i = 1; i < N; i ++)
{
c[i][0] = 1;
for(int j = 1; j <= i; j ++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % MOD;
}
int T = read();
while(T --)
{
int n = read(), f = read(), b = read();
if(f + b - 2 >= n)
puts("0");
else
{
int ans = (c[f - 1 + b - 1][f - 1] * stir[n - 1][f - 1 + b - 1]) % MOD;
println(ans);
}
}
}
HDU4372 Buildings的更多相关文章
- [Hdu4372] Count the Buildings
[Hdu4372] Count the Buildings Description There are N buildings standing in a straight line in the C ...
- HDU4372 Count the Buildings —— 组合数 + 第一类斯特林数
题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others) ...
- HDU4372 Count the Buildings (+题解:斯特林数)
题面 (笔者翻译) There are N buildings standing in a straight line in the City, numbered from 1 to N. The h ...
- [hdu4372]counting buildings
解题关键: n的环排列的个数与n-1个元素的排列的个数相等. 首先可以肯定,无论从最左边还是从最右边看,最高的那个楼一定是可以看到的,从这里入手. 假设最高的楼的位置固定,最高楼的编号为n,那么我们为 ...
- 【HDU4372】Count the Buildings (第一类斯特林数)
Description $N$座高楼,高度均不同且为$1~N$中的数,从前向后看能看到$F$个,从后向前看能看到$B$个,问有多少种可能的排列数. $T$组询问,答案模$1000000007$.其中$ ...
- [LeetCode] Shortest Distance from All Buildings 建筑物的最短距离
You want to build a house on an empty land which reaches all buildings in the shortest amount of dis ...
- LeetCode Shortest Distance from All Buildings
原题链接在这里:https://leetcode.com/problems/shortest-distance-from-all-buildings/ 题目: You want to build a ...
- 2015 Multi-University Training Contest 2 1002 Buildings
Buildings Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5301 Mean: n*m列的网格,删除一个格子x,y,用矩形 ...
- LTE Module User Documentation(翻译5)——Mobility Model with Buildings
LTE用户文档 (如有不当的地方,欢迎指正!) 8 Mobility Model with Buildings 我们现在通过例子解释如何在 ns-3 仿真程序中使用 buildings 模型(特别 ...
随机推荐
- usb driver编写 (转)
在开头补上LDD3的一句话:如果 USB 驱动没有和另一种处理用户和设备交互的子系统(例如 input, tty, video, 等待)关联, 驱动可使用 USB 主编号为了使用传统的和用户空间之间的 ...
- 修改const变量
看下面的一段代码 ; int * j=(int*)(&i); // 运行正确,j确为i的地址,但 int *j=&i; 编译错误 *j=; //确实改变了i的值 printf(&quo ...
- rocketmq源码分析2-broker的消息接收
broker消息接收,假设接收的是一个普通消息(即没有事务),此处分析也只分析master上动作逻辑,不涉及ha. 1. 如何找到消息接收处理入口 可以通过broker的监听端口10911顺藤摸瓜式的 ...
- 04-python进阶-map&reduce
Map --映射 Reduce -- 归纳 将大数据标准化的处理 Map 拆封任务,Reduce将结果合并 这样是不是能够将很多计算机组成一台超级计算机呢? 一些问题:如果任务本身就很复杂,那么拆解任 ...
- 根据已经commit的数据,进行leader和peon之间的同步
Leader Election基本设计 按照rank表示优先级解决冲突问题,为每个monitor预先分配了一个rank 只会接受优先级(rank)比自己高.epoch比上次已接受的epoch大的选举请 ...
- leetcode with python -> tree
100. Same Tree Given two binary trees, write a function to check if they are the same or not. Two bi ...
- PDO 使用prepared statement 预处理LIMIT等非表字段参数
由于一些驱动不支持原生的预处理语句,因此PDO可以完全模拟预处理.PDO的模拟预处理是默认打开的,即便MYSQL驱动本身支持预处理,在默认打开的状态下,PDO是不会用到MYSQL本身提供的预处理功能. ...
- client三大家族区别(三大家族总结)
目录 目录 2 今日内容: 4 第1章 第三大家族client 4 1.1 主要成员 4 1.2 三大家族区别(三大家族总结) 5 1.2.1 Width和height 5 1.2.2 top和lef ...
- 用js判断浏览器类型及设备
<!DOCTYPE html> <html> <head> <title>JS判断是什么设备是什么浏览器</title> <meta ...
- 给长标题加...css
.wrap{ white-space:nowrap;overflow:hidden;text-overflow: ellipsis; } <th class="wrap"&g ...