@(HDU)[Stirling數, 排列組合]

Problem Description

There are N buildings standing in a straight line in the City, numbered from 1 to N. The heights of all the buildings are distinct and between 1 and N. You can see F buildings when you standing in front of the first building and looking forward, and B buildings when you are behind the last building and looking backward. A building can be seen if the building is higher than any building between you and it.

Now, given N, F, B, your task is to figure out how many ways all the buildings can be.

Input

First line of the input is a single integer T (T<=100000), indicating there are T test cases followed.

Next T lines, each line consists of three integer N, F, B, (0<N, F, B<=2000) described above.

Output

For each case, you should output the number of ways mod 1000000007(1e9+7).

Sample Input

2
3 2 2
3 2 1

Sample Output

2
1

Solution

好吧, 做這題時我是直接看中文翻譯的 ---- 但是, 當我看到這題原文的時候, 我還是不禁要吐槽出題人的英語水平: 題目描述都是什麼鬼 .. 狗屁不通, 表達的意思完全就不對好嗎 ..

言歸正傳, 先 腦補 翻譯 一下題意:

\(n\)个房子在一条线上(\(n \le 2000\)),高度分别为\(1\)~\(n\),现在需要将房子这样放置:从最左往右能看到\(F\)个房子,从最右往左能看到\(B\)个房子,能看到的条件是 两者之间的房子都要低于这个房子.问这样的方案数.

解法也並不算複雜:

因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那么在其左边还有\(f-1\)个能看见,在其右边还有\(b-1\)个,能看见 .. 所以可以这样将题目转化: 将除最高楼之外的\(n-1\)个楼,分成\(f-1+b-1\) 组,在最高楼左边\(f-1\) 组,在其右边\(b-1\)组,那么分成\(f-1+b-1\) 组 就是第一类Stirling数.\(s[n-1][f-1+b-1]\) .. 将这\(f-1+b-1\) 任意放在最高的楼房的左边和右边, 顺序是确定的, 两边分别的数量也是确定的, 因此组合数为\(C_{f - 1 + b - 1}^{f - 1}\)

故: 答案為$$ans = s[n - 1][f - 1 + b - 1] * c[f - 1 + b - 1][f - 1]$$

Hint: 輸入的數據可能會不合法, 要加以特判

if(f + b - 2 > n)
puts("0");

代碼:

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std; inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
} void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
} const int N = 1 << 11;
const int MOD = (int)1e9 + 7; long long stir[N][N];
int c[N][N]; int main()
{
stir[0][0] = 1; for(int i = 1; i < N; i ++)
stir[0][i] = (long long)0; for(long long i = 1; i < N; i ++)
{
stir[i][0] = (long long)0; for(int j = 1; j <= i; j ++)
stir[i][j] = ((i - 1) * stir[i - 1][j] % MOD + stir[i - 1][j - 1]) % MOD;
} memset(c, 0, sizeof(c)); c[0][0] = 1; for(int i = 1; i < N; i ++)
{
c[i][0] = 1; for(int j = 1; j <= i; j ++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % MOD;
} int T = read(); while(T --)
{
int n = read(), f = read(), b = read(); if(f + b - 2 >= n)
puts("0");
else
{
int ans = (c[f - 1 + b - 1][f - 1] * stir[n - 1][f - 1 + b - 1]) % MOD;
println(ans);
}
}
}

HDU4372 Buildings的更多相关文章

  1. [Hdu4372] Count the Buildings

    [Hdu4372] Count the Buildings Description There are N buildings standing in a straight line in the C ...

  2. HDU4372 Count the Buildings —— 组合数 + 第一类斯特林数

    题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others)  ...

  3. HDU4372 Count the Buildings (+题解:斯特林数)

    题面 (笔者翻译) There are N buildings standing in a straight line in the City, numbered from 1 to N. The h ...

  4. [hdu4372]counting buildings

    解题关键: n的环排列的个数与n-1个元素的排列的个数相等. 首先可以肯定,无论从最左边还是从最右边看,最高的那个楼一定是可以看到的,从这里入手. 假设最高的楼的位置固定,最高楼的编号为n,那么我们为 ...

  5. 【HDU4372】Count the Buildings (第一类斯特林数)

    Description $N$座高楼,高度均不同且为$1~N$中的数,从前向后看能看到$F$个,从后向前看能看到$B$个,问有多少种可能的排列数. $T$组询问,答案模$1000000007$.其中$ ...

  6. [LeetCode] Shortest Distance from All Buildings 建筑物的最短距离

    You want to build a house on an empty land which reaches all buildings in the shortest amount of dis ...

  7. LeetCode Shortest Distance from All Buildings

    原题链接在这里:https://leetcode.com/problems/shortest-distance-from-all-buildings/ 题目: You want to build a ...

  8. 2015 Multi-University Training Contest 2 1002 Buildings

    Buildings Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5301 Mean: n*m列的网格,删除一个格子x,y,用矩形 ...

  9. LTE Module User Documentation(翻译5)——Mobility Model with Buildings

    LTE用户文档 (如有不当的地方,欢迎指正!) 8 Mobility Model with Buildings   我们现在通过例子解释如何在 ns-3 仿真程序中使用 buildings 模型(特别 ...

随机推荐

  1. LeetCode(206) Reverse Linked List

    题目 Reverse a singly linked list. click to show more hints. Hint: A linked list can be reversed eithe ...

  2. UVA - 11572 Unique Snowflakes 滑动扫描

    题目:点击打开题目链接 思路:从左往右扫描,定义扫描左端点L,右端点R,保证每次往几何中添加的都是符合要求的连续的数列中的元素,L和R从0扫到n,复杂度为O(n),使用set维护子数列,set查找删除 ...

  3. debian右键添加在终端中打开

    sudo apt-get install nautilus-open-terminal -y 注销,重启

  4. Angular Vue React 框架中的 CSS

    框架中的 CSS Angular Vue React 三大框架 Angular Vue 内置样式集成 React 一些业界实践 Angular Angular . js (1.x):没有样式集成能力 ...

  5. HDU 3315 KM My Brute

    参考题解 二分图的最优匹配.图很容易建立.再处理相似度的时候.把每个权值扩大100倍.然后再对i==j时 特殊标记.使他们的权值再++1.后面选择的时候就很容易挑出.按原匹配 匹配的个数. 100*( ...

  6. HDU 3072 SCC Intelligence System

    给出一个带权有向图,要使整个图连通.SCC中的点之间花费为0,所以就先缩点,然后缩点后两点之间的权值为最小边的权值,把这些权值累加起来就是答案. #include <iostream> # ...

  7. Python 前端 js基础

    Javascript 概述 JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的 ...

  8. IOS开发之----全局变量extern的使用

    extern,作用在IOS中,为了使用全局变量.比写在appDelegate和定义单例方便一些: 举例: 1.MyExternClass.h添加这个类,并在.m文件添加 代码 #import &quo ...

  9. 简单检测CDN链接是否有效

    CDN链接经常是使用的.但是,CDN链接挂了怎么办,因此,就要调用使用本站点的库,那么怎么实现呢? 检测CDN的jquery链接是否有效(这种方法比较简单) <script src=" ...

  10. webdriver高级应用- 浏览器中新开标签页(Tab)

    #encoding=utf-8 import unittest from selenium import webdriver import time import win32api, win32con ...