题意

题目链接

数集S的ForbiddenSum定义为无法用S的某个子集(可以为空)的和表示的最小的非负整数。
例如,S={1,1,3,7},则它的子集和中包含0(S’=∅),1(S’={1}),2(S’={1,1}),3(S’={3}),4(S’={1,3}),5(S' = {1, 1, 3}),但是它无法得到6。因此S的ForbiddenSum为6。
给定一个序列A,你的任务是回答该数列的一些子区间所形成的数集的ForbiddenSum是多少。

Sol

若序列已经被从小到大排序

考虑当前位置为$i$,且$[1, s_i]$内的数都可以被拼成

那么若$a[i + 1] > s_i + 1$,那么$a[i + 1]$不能被拼成

于是我们可以这样去做

首先在集合内找比$s = 1$小的数的和(也就相当于上面的前缀和),若比$1$少,则答案为$1$

若询问得到的结果是$1$,则$s = 1 + 1 = 2$,此时我们去找比$2$小的和

若$< 2$,则答案为$2$,不断做下去,直到不符合条件为止。

不符合条件,实际上也就是$a[i + 1] > s_i + 1$

每次在一段区间内询问小于等于某一个数的和,可以用主席树维护,

时间复杂度:若一直是符合条件的,我们每次询问会至少让si翻一倍,因此单次询问的复杂度为log sn,

加上主席树的复杂度,总复杂度为$O(Q logn log sn)$

#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN = * 1e6 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, a[MAXN], lim;
int ls[MAXN], rs[MAXN], sum[MAXN], tot, root[MAXN];
void insert(int &k, int p, int l, int r, int pos) {
k = ++ tot;
ls[k] = ls[p]; rs[k] = rs[p]; sum[k] = sum[p] + pos;
if(l == r) return ;
int mid = l + r >> ;
if(pos <= mid) insert(ls[k], ls[p], l, mid, pos);
else insert(rs[k], rs[p], mid + , r, pos);
}
int Query(int k, int p, int l, int r, int val) {
if(l > val) return ;
if(r <= val) return sum[k] - sum[p];
int mid = l + r >> ;
int suml = sum[ls[k]] - sum[ls[p]];
if(val > mid) return suml + Query(rs[k], rs[p], mid + , r, val);
else return Query(ls[k], ls[p], l, mid, val);
}
int solve(int l, int r) {
int nxt = ;
for(int i = ; ; i = nxt + ) {
nxt = Query(root[r], root[l - ], , lim, i);//询问区间内<=i的数的和
if(nxt < i) return i;
}
}
int main() {
N = read();
for(int i = ; i <= N; i++) a[i] = read(), lim = max(a[i], lim);
for(int i = ; i <= N; i++) insert(root[i], root[i - ], , lim, a[i]);
int Q = read();
while(Q--) {
int l = read(), r = read();
printf("%d\n", solve(l, r));
}
return ;
}

BZOJ4299: Codechef FRBSUM(主席树)的更多相关文章

  1. bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...

  2. BZOJ.4299.Codechef FRBSUM(主席树)

    题目链接 记mx为最大的满足1~mx都能组成的数. 考虑当前能构成1~v中的所有数,再加入一个数x,若x>v+1,则mx=v,x不会产生影响:否则x<=v+1,则新的mx=x+v. 对于区 ...

  3. [BZOJ4408&&BZOJ4299][FJOI2016 && Codechef]神秘数&&FRBSUM(主席树)

    4299: Codechef FRBSUM Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 550  Solved: 351[Submit][Statu ...

  4. BZOJ4299 Codechef FRBSUM(主席树)

    感觉非常不可做,于是考虑有什么奇怪的性质. 先考虑怎么求子集和mex.将数从小到大排序,假设已经凑出了0~n的所有数,如果下一个数>n+1显然mex就是n+1了,否则若其为x则可以凑出1~n+x ...

  5. BZOJ4299 : Codechef FRBSUM

    若$[0,i]$的数都可以得到,那么$[1,所有不大于i+1的数的和]$的数都可以得到. 如此暴力枚举答案,用可持久化线段树支持查询,因为每次数字至少翻一倍,所以复杂度为$O(m\log^2n)$. ...

  6. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  7. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  8. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  9. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

随机推荐

  1. JZOJ 1667【AHOI2009】中国象棋——dp

    题目:https://jzoj.net/senior/#main/show/1667 只注重0.1.2的列有多少个,不注重它们的位置,就能记录了. #include<iostream> # ...

  2. noip2011普及组:统计单词

    题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位 置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定一个单词,请你输出它在 ...

  3. 修改eclipse中的propersties文件的默认编码格式

    最近遇到每次新建工程里无论在总得工程设置了utf-8还是刚刚建立的空间设置都没有效果, 原来properties文件的设置要单独弄,如下图所示

  4. 【转】Android Menu

    Menu由两种形式,Option menu和Context menu.前者是按下设备的Menu硬按钮弹出,后者是长按widget弹出. Option Menu 当我们按下Menu的硬件按钮时,Opti ...

  5. android和iOS平台的崩溃捕获和收集

    转自:http://www.cnblogs.com/lancidie/archive/2013/04/13/3019349.html 通过崩溃捕获和收集,可以收集到已发布应用(游戏)的异常,以便开发人 ...

  6. Spring3注解零配置

    我们在以前学习 Spring 的时候,其所有的配置信息都写在 applicationContext.xml 里,大致示例如下: java代码: 查看复制到剪贴板打印     OracleDriver& ...

  7. Python中的数据结构和算法

    一.算法 1.算法的时间复杂度 大 O 记法,是描述算法复杂度的符号O(1) 常数复杂度,最快速的算法. 取数组第 1000000 个元素 字典和集合的存取都是 O(1) 数组的存取是 O(1) O( ...

  8. <c和指针>学习笔记1之快速上手和基本概念

    1 c语言中的注释 功能:使这段代码在程序中不起作用,当然如果是功能注释,那是方便其他人阅读您的代码. 大部分情况下,多行的注释,我们采用的是这种方式,例如  /*内容*/. 这个符号不能嵌套,也就是 ...

  9. font-size: 0;解决元素间的空白间隙

    看别人的代码看到过font-size:0这个设置,不明白为何这样操作,后来研究一下才明白:这是像素级还原设计稿很有用的设置,因为元素节点有文本节点,在缩进代码时会占据宽度,这么说不好理解,演示如下: ...

  10. js中match的用法

    match() 方法将检索字符串 stringObject,以找到一个或多个与 regexp 匹配的文本.这个方法的行为在很大程度上有赖于 regexp 是否具有标志 g. 一.如果 regexp 没 ...