BZOJ_5338_ [TJOI2018]xor_可持久化trie
BZOJ_5338_ [TJOI2018]xor_可持久化trie
Description
Input
Output
Sample Input
1 2 3
1 5 1
2 3 1
2 4 2
Sample Output
【样例解释】
将点1,2染黑就能获得最大收益。
HINT
2017.9.12新加数据一组 By GXZlegend
博客里没有几道可持久化trie的题,还是更一篇吧。
同时要求子树和两点路径上的信息,
只能用两个序维护一下,然后可持久化一下随便搞搞。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 200050
int head[N],to[N],nxt[N],val[N],cnt,n,m,be[N],ed[N],tot,root[N],t[N*33],sanae,ch[N*33][2],son[N],siz[N],fa[N],dep[N],top[N];
int t2[N*33],ch2[N*33][2],dfn[N],marisa,reimu,root2[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void update(int x,int c,int &y,int q) {
y=++sanae; int p=y; t[p]=t[q]+c;
int i;
for(i=30;i>=0;i--) {
int k=(x>>i)&1;
ch[p][k]=++sanae; ch[p][!k]=ch[q][!k];
p=ch[p][k]; q=ch[q][k]; t[p]=t[q]+c;
}
}
void upd(int x,int c,int &y,int q) {
y=++reimu; int p=y; t2[p]=t2[q]+c;
// printf("upd---%d %d %d %d\n",p,q,t2[p],t2[q]);
int i;
for(i=30;i>=0;i--) {
int k=(x>>i)&1;
ch2[p][k]=++reimu; ch2[p][!k]=ch2[q][!k];
p=ch2[p][k]; q=ch2[q][k]; t2[p]=t2[q]+c;
}
}
void dfs(int x,int y) {
dfn[x]=++marisa; upd(val[x],1,root2[marisa],root2[marisa-1]);
// printf("dfs---%d %d %d %d\n",root2[marisa],root2[marisa-1],t2[root2[marisa]],t2[root2[marisa-1]]);
// printf("%d %d %d %d\n",t2[root2[1]],t2[root2[2]],t2[root2[3]],t2[root2[4]]);
int i; be[x]=++tot; update(val[x],1,root[tot],root[tot-1]); siz[x]=1; fa[x]=y; dep[x]=dep[y]+1;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs(to[i],x); siz[x]+=siz[to[i]]; if(siz[son[x]]<siz[to[i]]) son[x]=to[i];
}
}
ed[x]=++tot; update(val[x],-1,root[tot],root[tot-1]);
}
void dfs2(int x,int t) {
top[x]=t;
if(son[x]) dfs2(son[x],t);
int i;
for(i=head[x];i;i=nxt[i])if(to[i]!=fa[x]&&to[i]!=son[x]) dfs2(to[i],to[i]);
}
int lca(int x,int y) {
while(top[x]!=top[y]) {
if(dep[top[x]]>dep[top[y]]) swap(x,y);
y=fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
int solve1(int x,int y,int v) {
// printf("%d %d %d %d\n",x,y,t2[x],t2[y]);
int i,re=0;
for(i=30;i>=0;i--) {
int k=!((v>>i)&1);
if(t2[ch2[y][k]]-t2[ch2[x][k]]) {
re+=(1<<i); x=ch2[x][k]; y=ch2[y][k];
}else x=ch2[x][!k],y=ch2[y][!k];
}
return re;
}
int solve2(int x,int y,int z,int w,int v) {
int i,re=0;
for(i=30;i>=0;i--) {
int k=!((v>>i)&1);
if(t[ch[x][k]]+t[ch[y][k]]-t[ch[z][k]]-t[ch[w][k]]>0) re+=(1<<i),x=ch[x][k],y=ch[y][k],z=ch[z][k],w=ch[w][k];
else x=ch[x][!k],y=ch[y][!k],z=ch[z][!k],w=ch[w][!k];
}
return re;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,opt,z;
for(i=1;i<=n;i++) scanf("%d",&val[i]);
for(i=1;i<n;i++) scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs(1,0); dfs2(1,1);
// printf("%d %d %d %d\n",t2[root2[1]],t2[root2[2]],t2[root2[3]],t2[root2[4]]);
for(i=1;i<=m;i++) {
scanf("%d%d%d",&opt,&x,&y);
if(opt==1) {
// printf("%d\n",root2[dfn[x]-1]);
printf("%d\n",solve1(root2[dfn[x]-1],root2[dfn[x]+siz[x]-1],y));
}else {
scanf("%d",&z);
int l=lca(x,y);
printf("%d\n",solve2(root[be[x]],root[be[y]],root[be[l]],root[be[fa[l]]],z));
}
}
}
BZOJ_5338_ [TJOI2018]xor_可持久化trie的更多相关文章
- BZOJ.5338.[TJOI2018]xor(可持久化Trie)
BZOJ LOJ 洛谷 惊了,18年了还有省选出模板题吗= = 做这题就是练模板的,我就知道我忘的差不多了 询问一就用以DFS序为前缀得到的可持久化Trie做,询问二很经典的树上差分. 注意求询问二的 ...
- [BZOJ5338][TJOI2018]xor(可持久化Trie)
可持久化Trie模板题. 建两种可持久化Trie,每个点两棵,一棵对DFS求前缀和,一棵对祖先求前缀和. 或者树剖,不好写多少还多个log. #include<cstdio> #inclu ...
- BZOJ 5338: [TJOI2018]xor 可持久化trie+dfs序
强行把序列问题放树上,好无聊啊~ code: #include <bits/stdc++.h> #define N 200005 #define setIO(s) freopen(s&qu ...
- BZOJ5338 [TJOI2018] Xor 【可持久化Trie树】【dfs序】
题目分析: 很无聊的一道题目.首先区间内单点对应异或值的询问容易想到trie树.由于题目在树上进行,case1将路径分成两段,然后dfs的时候顺便可持久化trie树做询问.case2维护dfs序,对d ...
- 可持久化trie(BZOJ5338: [TJOI2018]xor)
题面 BZOJ Sol 显然是要维护一个区域的 \(trie\) 树,然后贪心 区间 \(trie\) 树??? 可持久化 \(trie\) 树??? 直接参考主席树表示出区间的方法建立 \(trie ...
- 洛谷P4592 [TJOI2018]异或 【可持久化trie树】
题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...
- [TJOI2018] Xor 异或 (可持久化Trie,树链剖分)
题目描述 现在有一颗以 1 为根节点的由 n 个节点组成的树,树上每个节点上都有一个权值 \(v_i\).现在有 Q 次操作,操作如下: 1 x y :查询节点 x 的子树中与 y 异或结果的最大值. ...
- HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)
Tree Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Total Su ...
- 【BZOJ4260】 Codechef REBXOR 可持久化Trie
看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...
随机推荐
- 使用sphinx生成美观的文档
先上效果图 详情 首先,须要知道什么是restructuredtext.能够理解为类似于markdown的一个东西. 然后 安装.pip install sphinx 进入存放文档的文件夹,在命令行, ...
- Windows 10 1703创意者更新官方ISO镜像大全
2017年04月07日 20:00 19867 次阅读 稿源:快科技 12 条评论 Windows 10 Creators Update创意者更新正式版已经发布,目前只能通过易生.MCT工具或者ISO ...
- 关于安装oracle 11g client 出现安装先决条件检查全部失败
本文转自:https://blog.csdn.net/iloli/article/details/45244159 今天我在安装Oracle11gClient时,全部显示成N/A,Oracle无法执行 ...
- wifi认证Portal开发系列(三):portal协议
中国移动WLAN业务PORTAL协议规范介绍 一.用户上线认证流程 上线流程完成用户账号的认证,并把认证结果通知Portal Server,Portal server将会通知WLAN用户并且显示相应的 ...
- rtems 4.11 console驱动 (arm, beagle)
console驱动框架主要文件是 c/src/lib/libbsp/shared/console.c,驱动的入口是 console_initialize()主要作用是初始化BSP提供的全局变量 Con ...
- 【Scala】Scala的Predef对象
隐式引用(Implicit Import) Scala会自己主动为每一个程序加上几个隐式引用,就像Java程序会自己主动加上java.lang包一样. Scala中.下面三个包的内容会隐式引用到每一个 ...
- Unity3D研究院编辑器之自定义默认资源的Inspector面板
比如编辑模式下对场景或者特定文件夹有一些操作可以在这个面板里来完成. 代码如下: using System.Collections; using System.Collections.Generic; ...
- 【BZOJ2406】矩阵 二分+有上下界的可行流
[BZOJ2406]矩阵 Description Input 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. Output 第一行,输出最小的答案: ...
- 【BZOJ2666】[cqoi2012]组装 贪心
[BZOJ2666][cqoi2012]组装 Description 数轴上有m个生产车间可以生产零件.一共有n种零件,编号为1~n.第i个车间的坐标为xi,生产第pi种零件(1<=pi< ...
- 题解 P3805 【【模板】manacher算法】
题解 P3805 [[模板]manacher算法] 我们先看两个字符串: ABCCBA ABCDCBA 显然这两字符串是回文的 然而两个串的对称中心的特性不同,第一个串,它的对称中心在两个C中间,然而 ...