题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559

看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html

https://blog.csdn.net/lvzelong2014/article/details/79159346

https://blog.csdn.net/qq_35649707/article/details/78018944

还只会最简单的那种,正好在这道题里可以用到;

计算方案数,可以考虑DP,利用那个所有成绩都小于 B 的性质,枚举超过 B 的一门课;

设计 f[i][j] 表示当前到了第 i 门课,还剩 j 个人被碾压(一开始是所有人都被碾压,然后渐渐突破...);

则 f[i][j] = ∑(j<=t<=n-1) f[i-1][t] * C(n-1-t,rk[i]-1-(t-j)) * C(t,j) * g[i]

其中第一个组合数表示在 n-1-t 个上一次已经不被碾压的人中选出  rk[i]-1-(t-j) 个作为这次成绩高于 B 的人,第二个组合数表示从 t 个上次被碾压的人中选出 j 个这次仍然被碾压(也等同与选出 t-j 个人这次成绩高于 B );

g[i] 则表示在 i 这门课上的成绩分布情况,则选出的人的成绩可以对号入座;

而 g[i] = ∑(1<=j<=lim[i]) j^(n-rk[i]) * (lim[i]-j)^(rk[i]-1),表示若 B 的成绩是 j,则有 n-rk[i] 个人的成绩在 1~j 中选择,有 rk[i]-1 个人的成绩在 lim[i]-j~lim[i] 中选择;

可以发现这是个大约 n+1 次的多项式,所以设出几个点,求出当 x=lim 时的取值即可,这个过程的复杂度是 n^2 的。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=,mod=1e9+;
int n,m,K,lm[xn],rk[xn],g[xn],c[xn][xn],f[xn][xn],xx[xn],yy[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
int pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)
if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
for(int i=;i<=n;i++)c[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)c[i][j]=upt(c[i-][j]+c[i-][j-]);
}
int solve(int lim,int n,int m)
{
int num=n+m+,sum=;
for(int i=;i<=num;i++)
xx[i]=i,yy[i]=upt(yy[i-]+(ll)pw(i,n)*pw(lim-i,m)%mod);
for(int i=;i<=num;i++)
{
ll s1=,s2=;
for(int j=;j<=num;j++)
if(i!=j)//!!!
s1=s1*(lim-xx[j])%mod,s2=s2*(xx[i]-xx[j])%mod;
sum=upt(sum+s1*pw(s2,mod-)%mod*yy[i]%mod);
}
return sum;
}
int main()
{
n=rd()-; m=rd(); K=rd(); init();//n-1
for(int i=;i<=m;i++)lm[i]=rd();
for(int i=;i<=m;i++)rk[i]=rd(),g[i]=solve(lm[i],n-rk[i]+,rk[i]-);//+1
f[][n]=;//n
for(int i=;i<=m;i++)
for(int j=K;j<=n;j++)//k
for(int t=j;t<=n;t++)
{
if(t-j>rk[i]-||j>n-rk[i]+)continue;//+1!
f[i][j]=upt(f[i][j]+(ll)f[i-][t]*c[t][j]%mod*c[n-t][rk[i]--t+j]%mod*g[i]%mod);
}
printf("%d\n",f[m][K]);
return ;
}

bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值的更多相关文章

  1. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  2. BZOJ4559: [JLoi2016]成绩比较(dp 拉格朗日插值)

    题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \ ...

  3. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  4. bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...

  5. BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)

    这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...

  6. ●BZOJ 4559 [JLoi2016]成绩比较

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...

  7. P3270 [JLOI2016]成绩比较(拉格朗日插值)

    传送门 挺神仙的啊-- 设\(f[i][j]\)为考虑前\(i\)门课程,有\(j\)个人被\(B\)爷碾压的方案数,那么转移为\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\ ...

  8. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  9. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

随机推荐

  1. Git以及github的使用方法(三),git status查看工作区的状态,git diff查看具体修改内容

    我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容: Git is a distributed version c ...

  2. 修改 本地 IP 及 正则表达式 test exec match 的区别

    修改 IP 1.打开 "打开网络和共享中心" 2.打开 "更改适配器设置" 3.打开 "本地连接" 属性 4.修改 "协议版本 4 ...

  3. Populating Next Right Pointers in Each Node I, II——生成next树

    1. Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode * ...

  4. VueJS处理逻辑指令:v-if

    HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  5. 图像处理算法2——Otsu最佳阈值分割法http://blog.csdn.net/xiaqunfeng123/article/details/17121195

    http://blog.csdn.net/xiaqunfeng123/article/details/17121195Otsu法是1979年由日本大津提出的.该方法在类间方差最大的情况下是最佳的,即统 ...

  6. Kubernetes对象之Pod

    系列目录 Pod是Kubernetes调度的最小单元.一个Pod可以包含一个或多个容器,因此它可以被看作是内部容器的逻辑宿主机.Pod的设计理念是为了支持多个容器在一个Pod中共享网络和文件系统 因此 ...

  7. [听听音乐]X-Ray Dog

    X-Ray Dog是一个专门为好莱坞电影预告配乐的音乐工作室. https://music.163.com/#/artist?id=105618 有空的时候听听.

  8. 1069: [SCOI2007]最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2961  Solved: 1162[Submit][Sta ...

  9. difference between http get and post

    1 用get的地方 在浏览器中输入url直接访问资源时,用get.get是通过url传参的. 2 用post的地方 2.1 url长度超限时 post是将参数放在http body中的,因此对参数的长 ...

  10. Masonry库的使用

    Github 简要 自动布局最重要的是约束:UI元素间关系的数学表达式.约束包括尺寸.由优先级和阈值管理的相对位置.它们是添加剂,可能导致约束冲突 .约束不足造成布局无法确定 .这两种情况都会产生异常 ...