c++ 快速幂 代码实现
懒得打代码系列…
不过这个代码挺短的死背下来也ok
解析在最下面
建议自己手动试个数据理解一下 比如 3^5
^^
原理:a ^ b = a ^ (b / 2) * 2
(b是奇数的话还要再乘一个a)
还有就是我发现自己英语词汇还是太少了QAQ
只能乖乖打拼音…
装不了逼了真的超生气
低端版本
这个都看得懂 就懒得注释了嘻嘻:)
int quick_mi( int DiShu , int ZhiShu , int Mo ){
if(ZhiShu == 1) return DiShu ;
int ans ;
ans = quick_mi(DiShu , ZhiShu / 2 , Mo) % Mo;
ans = ans * ans % Mo ;
if(ZhiShu >>= 1){
ans = ans * DiShu % Mo ;
}
return ans ;
}
高级版本
(反正那些一眼看上去看不懂的对我来说都挺高级的^^
int quick_mi( int DiShu , int ZhiShu , int Mo ){
int ans = 1 ;
while( ZhiShu ){
if( ZhiShu & 1 ) //如果当前指数为奇数
ans = ans * DiShu % Mo ;//上下两行代码的顺序要理解一下
DiShu *= DiShu ;
ZhiShu >>= 1 ; //指数除以二
}
return ans ;
}
[其实就是指数不断除二 底数再不断乘二啦 还要不断 % Mo防止爆掉数据范围]
[不过要特别处理指数为奇数的时候 这里没有写出来]
ans = DiShu ^ ZhiShu % Mo ;
ans = { DiShu ^ ( ZhiShu / 2 ) * DiShu ^ ( ZhiShu / 2 ) } % Mo ;
ans = DiShu ^ ( ZhiShu / 2 ) ^ 2 % Mo ;
[当指数为奇数的时候 当前步还要再多乘一次底数]
ans = ( DiShu * DiShu ) ^ ( ZhiShu / 2 ) % Mo ;
ans = ( DiShu * DiShu ) ^ ( ZhiShu / 2 / 2 ) ^ 2 % Mo ;
ans = { ( DiShu * DiShu ) ^ ( DiShu * DiShu ) } ^ ( ZhiShu / 2 / 2 ) % Mo ;
[同理]
…..
[直到当前指数由 1 / 2 变成0的时候最后的答案就算出来啦]
[不要忘记奇数的处理!]
矩阵快速幂的原理也是一样的
只不过把*变成了矩阵意义上的乘而已
^^
c++ 快速幂 代码实现的更多相关文章
- HDU2035 人见人爱A^B(快速幂)
描述: 求A^B的最后三位数表示的整数.说明:A^B的含义是“A的B次方”. 输入: 输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A ...
- 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂
洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...
- 矩阵二分快速幂优化dp动态规划
矩阵快速幂代码: int n; // 所有矩阵都是 n * n 的矩阵 struct matrix { int a[100][100]; }; matrix matrix_mul(matrix A, ...
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- 递归实现快速幂(C++版)
快速幂是什么? 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 就以a的b次方来介绍: 把b转换成二进制数,该二进制数第i位的权为 ...
- ACM学习历程—HDU 5451 Best Solver(Fibonacci数列 && 快速幂)(2015沈阳网赛1002题)
Problem Description The so-called best problem solver can easily solve this problem, with his/her ch ...
- quickpow || 快速幂
洛谷例题 推荐自行脑补:百度百科 如果 ,那么 : 前言:快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 拿题目样例 Input :2 1 ...
- HLOJ1361 Walking on the Grid II 矩阵快速幂
题目分析: 就当是一次记录吧,2013年绍兴市市赛的一题,重现赛当时我想递推可能是矩阵快速幂吧,但是这个递推公式真没推出来(赛后猛如虎系列),这题和第一题有联系又有区别,第一题的递推很简单,dp[i] ...
- ACM | 算法 | 快速幂
目录 快速幂 快速幂取模 矩阵快速幂 矩阵快速幂取模 HDU1005练习 快速幂 幂运算:\(x ^ n\) 根据其一般定义我们可以简单实现其非负整数情况下的函数 定义法: int Pow ( ...
随机推荐
- 前端开发---css样式的使用方式
css使用方式: 1.内联样式表: <body style="background-color:green" margin:0 ; padding:0;> 2.嵌入式样 ...
- 74HC14D(6反向施密特触发器)
74HC14D:6反向施密特触发器:延迟特性,反向特性,整形特点. 施密特触发器是具有特殊功能的非门,当加在它的输入端A的电压逐渐上升到某个值时(正阈值电压),输出端Y会突然从高电平跳到低电平,而当输 ...
- Java微信公众平台开发(八)--多媒体消息回复之音乐
我们上一篇写了关注出发图片的回复.想着在发送一次音乐,最后基于回复消息分类情况下,实现一个简单的只能话回复.先附一张大致效果图. 下面我们进入代码阶段. (一)修改消息转发器MsgDispatcher ...
- mint 有线网络未管理的解决
sudo gedit /etc/NetworkManager/NetworkManager.conf 修改managed=true 参考链接:http://forum.ubuntu.org.cn/vi ...
- sublime text less安装踩坑图文讲解(less无法生成css)
唉,怎么感觉做个前端几乎把所有的坑都踩遍了啊,别人按照网上安装了一遍就好使,我这里就死活不行. 先说一下我的问题:网上说的能安装的都按了,可是sublime就是不给我生成css文件,后来知道了,就是l ...
- SnowKiting
原文 Let's go fly a kite...in the snow Reach into your closet,find that dusty kite and clean it off - ...
- codevs 1267 老鼠的旅行 2012年CCC加拿大高中生信息学奥赛
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description You are a mouse that lives in a cage in ...
- Linux配置临时IP地址
# ifconfig 查看网卡信息,如下图所示: # ifconfig eth0 192.168.0.107 eth0表示第一块网卡,Linux中所有的设配都是文件,所以eth0是第一块网卡的文件名, ...
- 线段树成段更新模板POJ3468 zkw以及lazy思想
别人树状数组跑几百毫秒 我跑 2500多 #include<cstdio> #include<map> //#include<bits/stdc++.h> #inc ...
- 2017四川省赛E题( Longest Increasing Subsequence)
提交地址: https://www.icpc-camp.org/contests/4rgOTH2MbOau7Z 题意: 给出一个整数数组,F[i]定义为以i结尾的最长上升子序列,然后问以此删除掉第i个 ...