Use trained sklearn model with pyspark
 
from pyspark import SparkContext
import numpy as np
from sklearn import ensemble def batch(xs):
yield list(xs) N = 1000
train_x = np.random.randn(N, 10)
train_y = np.random.binomial(1, 0.5, N) model = ensemble.RandomForestClassifier(10).fit(train_x, train_y) test_x = np.random.randn(N * 100, 10) sc = SparkContext() n_partitions = 10
rdd = sc.parallelize(test_x, n_partitions).zipWithIndex() b_model = sc.broadcast(model) result = rdd.mapPartitions(batch) \
.map(lambda xs: ([x[0] for x in xs], [x[1] for x in xs])) \
.flatMap(lambda x: zip(x[1], b_model.value.predict(x[0]))) print(result.take(100))

output:

[(0, 0), (1, 1), (2, 1), (3, 1), (4, 1), (5, 0), (6, 1), (7, 0), (8, 1), (9, 1), (10, 0), (11, 1), (12, 0), (13, 0), (14, 1), (15, 0), (16, 0), (17, 1), (18, 0), (19, 0), (20, 1), (21, 0), (22, 1), (23, 1), (24, 1), (25, 1), (26, 0), (27, 0), (28, 1), (29, 0), (30, 0), (31, 0), (32, 0), (33, 1), (34, 1), (35, 1), (36, 1), (37, 1), (38, 1), (39, 0), (40, 1), (41, 1), (42, 1), (43, 0), (44, 0), (45, 0), (46, 1), (47, 1), (48, 0), (49, 0), (50, 0), (51, 0), (52, 0), (53, 0), (54, 1), (55, 0), (56, 0), (57, 0), (58, 1), (59, 0), (60, 0), (61, 0), (62, 0), (63, 0), (64, 0), (65, 1), (66, 1), (67, 1), (68, 0), (69, 0), (70, 1), (71, 1), (72, 1), (73, 0), (74, 0), (75, 1), (76, 1), (77, 0), (78, 1), (79, 0), (80, 0), (81, 0), (82, 0), (83, 0), (84, 0), (85, 1), (86, 1), (87, 0), (88, 0), (89, 0), (90, 1), (91, 0), (92, 0), (93, 0), (94, 0), (95, 0), (96, 1), (97, 1), (98, 0), (99, 1)]

>>> rdd.take(3)                                                                
18/05/15 09:37:18 WARN TaskSetManager: Stage 1 contains a task of very large size (723 KB). The maximum recommended task size is 100 KB.
[(array([-0.3142169 , -1.80738243, -1.29601447, -1.42500793, -0.49338668,
        0.32582428,  0.15244227, -2.41823997, -1.51832682, -0.32027413]), 0), (array([-0.00811787,  1.1534555 ,  0.92534192,  0.27246042,  1.06946727,
       -0.1420289 ,  0.3740049 , -1.84253399,  0.55459764, -0.96438845]), 1), (array([ 1.21547425,  0.87202465,  3.00628464, -1.0732967 , -1.79575235,
       -0.71943746,  0.83692206,  1.87272991,  0.31497977, -0.84061547]), 2)]

>>rdd.mapPartitions(batch).take(3)

[...,

# one element==>

[(array([ 0.95648585,  0.15749105, -1.2850535 ,  1.10495528, -1.98184263,
       -0.11160677, -0.11004717, -0.26977669,  0.93867963,  0.28810482]), 29691),

(array([ 2.67605744,  0.3678955 , -1.10677742,  1.3090983 ,  0.33327663,
       -0.29876755, -0.00869512, -0.53998984, -2.07484434, -0.83550041]), 29692),

(array([-0.23798771, -1.43967907,  0.05633439, -0.45039489, -1.47068918,
       -2.09854387, -0.70119312, -1.93214578,  0.44166082, -0.1442232 ]), 29693),

(array([-1.21476146, -0.7558832 , -0.53902146, -0.48273363, -0.24050023,
       -1.11263081, -0.02150105,  0.20790397,  0.78268026, -1.53404034]), 29694),

(array([ -9.63973837e-01,   3.51228982e-01,   3.51805780e-01,
        -5.06041907e-01,  -2.06905036e+00,  -8.66070627e-04,
        -1.11580654e+00,   4.94298203e-01,  -2.68946627e-01,
        -9.61166626e-01]), 29695)]

]

ref:

https://gist.github.com/lucidfrontier45/591be3eb78557d1844ca

https://stackoverflow.com/questions/42887621/how-to-do-prediction-with-sklearn-model-inside-spark/42887751

Well,

I will show an example of linear regression in Sklearn and show you how to use that to predict elements in Spark RDD.

First training the model with sklearn example:

# Create linear regression object
regr = linear_model.LinearRegression() # Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

Here we just have the fit, and you need to predict each data from an RDD.

Your RDD in this case should be a RDD with X like this:

rdd = sc.parallelize([1, 2, 3, 4])

So you first need to broadcast your model of sklearn:

regr_bc = self.sc.broadcast(regr)

Then you can use it to predict your data like this:

rdd.map(lambda x: (x, regr_bc.value.predict(x))).collect()

So your element in the RDD is your X and the seccond element is going to be your predicted Y. The collect will return somthing like this:

[(1, 2), (2, 4), (3, 6), ...]

Well,

I will show an example of linear regression in Sklearn and show you how to use that to predict elements in Spark RDD.

First training the model with sklearn example:

# Create linear regression object
regr = linear_model.LinearRegression() # Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

Here we just have the fit, and you need to predict each data from an RDD.

Your RDD in this case should be a RDD with X like this:

rdd = sc.parallelize([1, 2, 3, 4])

So you first need to broadcast your model of sklearn:

regr_bc = self.sc.broadcast(regr)

Then you can use it to predict your data like this:

rdd.map(lambda x: (x, regr_bc.value.predict(x))).collect()

So your element in the RDD is your X and the seccond element is going to be your predicted Y. The collect will return somthing like this:

[(1, 2), (2, 4), (3, 6), ...]

Use trained sklearn model with pyspark的更多相关文章

  1. Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy

    边缘智能:按需深度学习模型和设备边缘协同的共同推理 本文为SIGCOMM 2018 Workshop (Mobile Edge Communications, MECOMM)论文. 笔者翻译了该论文. ...

  2. sklearn保存模型-【老鱼学sklearn】

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  3. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  4. pyspark 随机森林特征重要性

    # IMPORT >>> import numpy >>> from numpy import allclose >>> from pyspark ...

  5. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

  6. 转sklearn保存模型

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  7. TensorFlow Lite demo——就是为嵌入式设备而存在的,底层调用NDK神经网络API,注意其使用的tf model需要转换下,同时提供java和C++ API,无法使用tflite的见后

    Introduction to TensorFlow Lite TensorFlow Lite is TensorFlow’s lightweight solution for mobile and ...

  8. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  9. Sequence Models Week 1 Character level language model - Dinosaurus land

    Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...

随机推荐

  1. TP框架中多条件筛选

            $pid =I('pid');         $year = I('year');         $productType = I('productType');         ...

  2. es6 includes(), startsWith(), endsWith()

    传统上,JavaScript 只有indexOf方法,可以用来确定一个字符串是否包含在另一个字符串中.ES6 又提供了三种新方法. includes():返回布尔值,表示是否找到了参数字符串. sta ...

  3. VUE 路由变化页面数据不刷新问题

    出现这种情况是因为依赖路由的params参数获取写在created生命周期里面,因为相同路由二次甚至多次加载的关系 没有达到监听,退出页面再进入另一个文章页面并不会运行created组件生命周期,导致 ...

  4. SQL之相关语法及操作符

    概述:UNION.SELECT INTO.INSERT INTO SELECT.SQL约束 UNION操作符 UNION操作符用于合并两个或多个SELECT语句的结果集 请注意,UNION内部的每个S ...

  5. hdu 2814 Interesting Fibonacci

    pid=2814">点击此处就可以传送 hdu 2814 题目大意:就是给你两个函数,一个是F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1; 还有 ...

  6. easy ui 自己主动生成accordion不能自适应父容器问题

    用easy-ui的accordion,用json自己主动生成时,不能自适应父容器.代码例如以下: (document).ready(function(){         $.ajax({       ...

  7. python学习(十)赋值、表达式、if、while、for

    明天以搞定这几个应该不难 赋值.表达式.if.while.for 函数.作用域.参数.函数高级话题 迭代和解析一.二 还有我的<30天自制操作系统>没看 #!/usr/bin/python ...

  8. nginx - KeepAlive详细解释

    最近工作中遇到一个问题,想把它记录下来,场景是这样的: 从上图可以看出,用户通过Client访问的是LVS的VIP, VIP后端挂载的RealServer是Nginx服务器. Client可以是浏览器 ...

  9. 17 nginx连接memcached

    一:配置php扩展memcached wget http://memcached.googlecode.com/files/memcached-1.4.9.tar.gz # tar zvxf memc ...

  10. tp框架知识 之(链接数据库和操作数据内容)

    框架有时会用到数据库的内容,在"ThinkPhp框架知识"的那篇随笔中提到过,现在这篇随笔详细的描述下. 一.链接数据库 (1)找到模块文件夹中的Conf文件夹,然后进行编写con ...