传送门

咱用的是拆系数\(FFT\)因为咱真的不会三模数\(NTT\)……

简单来说就是把每一次多项式乘法都改成拆系数\(FFT\)就行了

如果您还不会多项式求逆的左转->这里

顺带一提,因为求逆的时候要乘两次,两次分开乘,否则会像咱一样炸精度

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]=' ';
}
const int N=5e5+5,P=1e9+7;const double Pi=acos(-1.0);
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct cp{
double x,y;
cp(double xx=0,double yy=0){x=xx,y=yy;}
inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}
inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}
inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);}
inline cp operator *(const double &b)const{return cp(x*b,y*b);}
}A[N],B[N],C[N],D[N],E[N],G[N],F[N],H[N],w[N],a[N],b[N],c[N],d[N];
int r[N];
int n,len;
void FFT(cp *A,int ty,int lim){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
for(R int k=0;k<mid;++k){
cp x=A[j+k],y=w[mid+k]*A[j+k+mid];
A[j+k]=x+y,A[j+k+mid]=x-y;
}
if(ty==-1){
reverse(A+1,A+lim);
double k=1.0/lim;fp(i,0,lim-1)A[i]=A[i]*k;
}
}
void Mul(cp *a,cp *b,int len,cp *d){
int lim=1,l=0;while(lim<(len<<1))lim<<=1,++l;
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(R int i=1;i<lim;i<<=1)fp(k,0,i-1)w[i+k]=cp(cos(Pi*k/i),sin(Pi*k/i));
fp(i,0,len-1){
A[i].x=(ll)(a[i].x+0.5)>>15,B[i].x=(ll)(a[i].x+0.5)&32767;
C[i].x=(ll)(b[i].x+0.5)>>15,D[i].x=(ll)(b[i].x+0.5)&32767;
A[i].y=B[i].y=C[i].y=D[i].y=0;
}fp(i,len,lim-1)A[i]=B[i]=C[i]=D[i]=0;
FFT(A,1,lim),FFT(B,1,lim),FFT(C,1,lim),FFT(D,1,lim);
fp(i,0,lim-1){
F[i]=A[i]*C[i],G[i]=A[i]*D[i]+C[i]*B[i],H[i]=B[i]*D[i];
}
FFT(F,-1,lim),FFT(G,-1,lim),FFT(H,-1,lim);
fp(i,0,lim-1){
d[i].x=(((ll)(F[i].x+0.5)%P<<30)+((ll)(G[i].x+0.5)<<15)+((ll)(H[i].x+0.5)))%P;
d[i].y=0;
}
}
void Inv(cp *a,cp *b,int len){
if(len==1)return b[0].x=ksm(a[0].x,P-2),void();
Inv(a,b,len>>1);
Mul(a,b,len,c);
Mul(c,b,len,d);
fp(i,0,len-1)b[i].x=((ll)(b[i].x+b[i].x-d[i].x)%P+P)%P;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();fp(i,0,n-1)a[i].x=read();
int len=1;while(len<n)len<<=1;
Inv(a,b,len);
fp(i,0,n-1)print((ll)(b[i].x+0.5)%P);
return Ot(),0;
}

洛谷P4239 【模板】多项式求逆(加强版)(多项式求逆)的更多相关文章

  1. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  7. 【题解】洛谷P1966 [NOIP2013TG] 火柴排队(树状数组+逆序对)

    次元传送门:洛谷P1966 思路 显然在两排中 每排第i小的分别对应就可取得最小值(对此不给予证明懒) 所以我们只在意两排的火柴是第几根 高度只需要用来进行排序(先把两个序列改成有序的方便离散化) 因 ...

  8. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  9. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  10. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

随机推荐

  1. 模拟登陆,selenium,线程池

    一 . 模拟登陆案例(识别验证码)  1 . 打码平台 - 云打码 : www.yundama.com  使用步骤 : - 注册两个账户,普通用户和开发者用户 : - 登陆 普通用户查看余额 登陆开发 ...

  2. js正則函數 match、exec、test、search、replace、split 使用介紹集合

    match 方法 使用正則表達式模式對字元串執行查找,並將包含查找的結果作為數組返回. stringObj.match(rgExp) 參數 stringObj 必選項.對其進行查找的 String 對 ...

  3. JDBC超时原理与设置

    抄录自网上,因为担心以后找不到,因此抄录之.感谢分享的大神! 英文原版:http://www.cubrid.org/blog/dev-platform/understanding-jdbc-inter ...

  4. Android Weekly Notes Issue #261

    Android Weekly Issue #261 June 11th, 2017 Android Weekly Issue #261 本期内容包括: Adaptive Icons; Kotlin实现 ...

  5. linux系统 标准目录及其内容

      路径名 操作系统 内容 /bin 所有 最核心的操作系统命令 /boot LS 内核和加载内核所需的文件 /dev 所有 伪终端,磁盘,打印机等的设备项 /etc 所有 关键的启动文件和配置文件 ...

  6. 单页导航菜单视觉设计HTML模板

    单页导航菜单视觉设计HTML模板,视觉,企业,html,单页,单页导航菜单视觉设计HTML模板是一款磨砂背景的大气时尚HTML设计网页模板 http://www.huiyi8.com/moban/

  7. 延时加载 lazyload使用技巧

    html <img class="lazy" src="images/src_unit.png" data-src="images/index/ ...

  8. Memcached HA架构探索

    https://code.google.com/p/memagent/ 标签:memcached magent 高可用 HA 架构原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者 ...

  9. 使用TortoiseGit同步代码到github远程仓库

    1.clone github上的代码仓库的URL 可以用HTTPS,SSH, or Subversion 2.同步push 到远程仓库时 要用 SSH地址,同生成SSH private key ,在g ...

  10. python爬虫知识点总结(三)urllib库详解

    一.什么是Urllib? 官方学习文档:https://docs.python.org/3/library/urllib.html 廖雪峰的网站:https://www.liaoxuefeng.com ...