scikit-learn:4.2. Feature extraction(特征提取,不是特征选择)
http://scikit-learn.org/stable/modules/feature_extraction.html
带病在网吧里。
。。。。。
写。求支持。
。。
1、首先澄清两个概念:特征提取和特征选择(
Feature extraction is very different from Feature
selection
)。
the former consists in transforming arbitrary data, such as text or images, into numerical
features usable for machine learning. The latter is a machine learning technique applied on these features(从已经提取的特征中选择更好的特征).
以下分为四大部分来讲。主要还是4、text feature extraction
2、loading features form dicts
class DictVectorizer。举个样例就好:
>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Fransisco', 'temperature': 18.},
... ]
>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()
>>> vec.fit_transform(measurements).toarray()
array([[ 1., 0., 0., 33.],
[ 0., 1., 0., 12.],
[ 0., 0., 1., 18.]])
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']
class DictVectorizer对于提取某个特定词汇附近的feature
windows很实用,比如增加我们通过一个已有的algorithm提取了word ‘sat’ 在句子‘The cat sat on the mat.’中的PoS(Part
of Speech)特征。例如以下:
>>> pos_window = [
... {
... 'word-2': 'the',
... 'pos-2': 'DT',
... 'word-1': 'cat',
... 'pos-1': 'NN',
... 'word+1': 'on',
... 'pos+1': 'PP',
... },
... # in a real application one would extract many such dictionaries
... ]
上面的PoS特征就能够vectorized into a sparse two-dimensional matrix suitable for feeding into a classifier (maybe after being piped into a text.TfidfTransformer for
normalization):
>>> vec = DictVectorizer()
>>> pos_vectorized = vec.fit_transform(pos_window)
>>> pos_vectorized
<1x6 sparse matrix of type '<... 'numpy.float64'>'
with 6 stored elements in Compressed Sparse ... format>
>>> pos_vectorized.toarray()
array([[ 1., 1., 1., 1., 1., 1.]])
>>> vec.get_feature_names()
['pos+1=PP', 'pos-1=NN', 'pos-2=DT', 'word+1=on', 'word-1=cat', 'word-2=the']
3、feature hashing
The class FeatureHasher is
a high-speed, low-memory vectorizer that uses a technique known as feature
hashing, or the “hashing trick”.
因为hash。所以仅仅保存feature的interger index。而不保存原来feature的string名字。所以没有inverse_transform方法。
FeatureHasher 接收dict对,即 (feature, value) 对,或者strings,由构造函数的參数input_type决定.结果是scipy.sparse matrix。假设是strings,则value默认取1,比如 ['feat1', 'feat2', 'feat2'] 被解释为[('feat1', 1), ('feat2', 2)].
4、text feature extraction
由于内容太多,分开写了。參考着篇博客:http://blog.csdn.net/mmc2015/article/details/46997379
5、image feature extraction
提取部分图片(Patch extraction):
The extract_patches_2d function从图片中提取小块,存储成two-dimensional
array, or three-dimensional with color information along the third axis. 使用reconstruct_from_patches_2d.
可以将全部的小块重构成原图:
>>> import numpy as np
>>> from sklearn.feature_extraction import image >>> one_image = np.arange(4 * 4 * 3).reshape((4, 4, 3))
>>> one_image[:, :, 0] # R channel of a fake RGB picture
array([[ 0, 3, 6, 9],
[12, 15, 18, 21],
[24, 27, 30, 33],
[36, 39, 42, 45]]) >>> patches = image.extract_patches_2d(one_image, (2, 2), max_patches=2,
... random_state=0)
>>> patches.shape
(2, 2, 2, 3)
>>> patches[:, :, :, 0]
array([[[ 0, 3],
[12, 15]], [[15, 18],
[27, 30]]])
>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2, 3)
>>> patches[4, :, :, 0]
array([[15, 18],
[27, 30]])
重构方式例如以下:
>>> reconstructed = image.reconstruct_from_patches_2d(patches, (4, 4, 3))
>>> np.testing.assert_array_equal(one_image, reconstructed)
The PatchExtractor class和 extract_patches_2d,一样,仅仅只是能够同一时候接受多个图片作为输入:
>>> five_images = np.arange(5 * 4 * 4 * 3).reshape(5, 4, 4, 3)
>>> patches = image.PatchExtractor((2, 2)).transform(five_images)
>>> patches.shape
(45, 2, 2, 3)
图片像素的连接(Connectivity graph of an image):
主要是依据像素的区别来推断图片的每两个像素点是否连接。
。。
。
。
The function img_to_graph returns
such a matrix from a 2D or 3D image. Similarly, grid_to_graph build
a connectivity matrix for images given the shape of these image.
头疼。。。。
碎觉。
。。
scikit-learn:4.2. Feature extraction(特征提取,不是特征选择)的更多相关文章
- Feature extraction - sklearn文本特征提取
http://blog.csdn.net/pipisorry/article/details/41957763 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的主要应用领域 ...
- ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)
ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- A Survey of Shape Feature Extraction Techniques中文翻译
Yang, Mingqiang, Kidiyo Kpalma, and Joseph Ronsin. "A survey of shape feature extraction techni ...
- 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...
- Software: MPEG-7 Feature Extraction Library
Software MPEG-7 Feature Extraction Library : This library is adapted from MPEG-7 XM Reference Softwa ...
- Feature Engineering versus Feature Extraction: Game On!
Feature Engineering versus Feature Extraction: Game On! "Feature engineering" is a fancy t ...
随机推荐
- 小程序语音红包开发中 汉字转拼音的问题 微信小程序红包开发遇到的坑
公司最近在开发微信小程序的红包功能,语音红包需要用到文字转拼音的功能. 之前介绍过怎么将中文的汉字转为拼音的,具体看下面这篇文章. 微信语音红包小程序开发如何提高精准度 红包小程序语音识别精准度 微信 ...
- Java连接SQLite数据库
下载java包:sqlite-jdbc-3.7.2.jar,放到java工程目录lib下 如下代码实例: import java.sql.*; import org.sqlite.JDBC; /** ...
- Django AUTHENTICATION_BACKENDS
指定认证后端 Django维护一个”authentication backends”的列表用来测试认证.当调用 django.contrib.auth.authenticate() — Django将 ...
- Codeforces663E. Binary Table
$n \leq 20,m \leq 100000$的01矩阵,可整行整列01翻转,问最少剩几个1. 一个暴力的做法是枚举$2^n$种行翻转然后$m$列扫一遍.但其实在行翻转情况确定的情况下我们只关心两 ...
- usb_control_msg参数详解【转】
转自:http://blog.chinaunix.net/uid-25909619-id-3243059.html usb_control_msg() struct usb_ctrlrequest|- ...
- iOS开发之手势gesture详解(二)
与其他用户界面控件交互 UIControl子类会覆盖parentView的gesture.例如当用户点击UIButton时,UIButton会接受触摸事件,它的parentView不会接收到.这仅适用 ...
- Yii命令行模式
(具体参数描述请使用命令看描述,不过全是英文) 1.Yii提供命令行指令不多,常用的有webapp 和 shell. 1. message 搜索指定文件信息 yicc message webroot ...
- Yii查看(输出)当前页面执行的sql语句
在Yii框架下查看当前页面执行的所有sql语句的方法,主要是通过配置相关文件来达到调试sql的目的,具体方法如下: (1)修改 index.php 开启调试模式 在 index.php 文件内增加如下 ...
- AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。
AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJAX 是与服 ...
- mac下安装pyQt4
1.首先安装QT,同时要有gcc 2.然后就是先安装sip,然后安装pyqt4 python configure.py -q /usr/bin/qmake-4.8 -d /Library/Python ...