题意:

给一个计算器,有一系列计算步骤,只有加,乘,幂三种运算。

有一种查询操作:查询初始值为\(x\)的时候,最终运算结果模\(29393\)的值。

有一种修改操作:可以修改第\(p\)个运算的运算符和运算数。

分析:

分解一下,\(29393=7 \times 13 \times 17 \times 19\)。

所以我们可以维护\(4\)棵线段树,区间维护的信息就是初始值为\(x\)经过这段区间最终得到的值。

然后就用中国剩余定理整合一下。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 50000 + 10;
const int maxnode = maxn * 4; const int prime[] = { 7, 13, 17, 19 }; int val[4][20][maxnode];
int n, m;
char op[maxn], tmp[5];
int x[maxn]; int pow_mod(int a, int b, int mod) {
int ans = 1;
while(b) {
if(b & 1) ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
} int calc(int a, char op, int b, int mod) {
if(op == '+') return ((a + b) % mod);
if(op == '*') return a * b % mod;
return pow_mod(a, b, mod);
} void pushup(int o) {
for(int i = 0; i < 4; i++)
for(int j = 0; j < prime[i]; j++) {
int t = val[i][j][o<<1];
val[i][j][o] = val[i][t][o<<1|1];
}
} void build(int o, int L, int R) {
if(L == R) {
for(int i = 0; i < 4; i++)
for(int j = 0; j < prime[i]; j++)
val[i][j][o] = calc(j, op[L], x[L], prime[i]);
return;
}
int M = (L + R) / 2;
build(o<<1, L, M);
build(o<<1|1, M+1, R);
pushup(o);
} void update(int o, int L, int R, int p) {
if(L == R) {
for(int i = 0; i < 4; i++)
for(int j = 0; j < prime[i]; j++)
val[i][j][o] = calc(j, op[p], x[p], prime[i]);
return;
}
int M = (L + R) / 2;
if(p <= M) update(o<<1, L, M, p);
else update(o<<1|1, M+1, R, p);
pushup(o);
} void gcd(int a, int b, int& d, int& x, int& y) {
if(!b) { d = a; x = 1; y = 0; }
else { gcd(b, a%b, d, y, x); y -= x*(a/b); }
} int a[4];
int CRT() {
int M = 29393, d, y, x = 0;
for(int i = 0; i < 4; i++) {
int w = M / prime[i];
gcd(prime[i], w, d, d, y);
x = (x + y*w*a[i]) % M;
}
return (x+M)%M;
} int main()
{
int T; scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
printf("Case #%d:\n", kase);
scanf("%d%d", &n, &m); getchar();
for(int i = 1; i <= n; i++) {
scanf("%c%d", op + i, x + i);
getchar();
}
build(1, 1, n); while(m--) {
int cmd, p;
scanf("%d%d", &cmd, &p);
if(cmd == 1) {
for(int i = 0; i < 4; i++)
a[i] = val[i][p%prime[i]][1];
printf("%d\n", CRT());
} else {
getchar();
scanf("%c%d", op + p, x + p);
update(1, 1, n, p);
}
}
} return 0;
}

HDU 5238 Calculator 线段树 中国剩余定理的更多相关文章

  1. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  2. HDU 5446 Unknown Treasure Lucas+中国剩余定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...

  3. hdu 3579 Hello Kiki 不互质的中国剩余定理

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  4. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  5. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  6. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  7. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

  8. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  9. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

随机推荐

  1. CA、公钥、私钥 概要

    CA.公钥.私钥 概要 现在在开发中遇到一个需求,需要使用tls加密技术,之前并没有了解过,这里来做一个关于CA,公钥,密钥的总结,至于怎么生成这儿就不讲了,如果有机会可以再开一个单章来讲一下. 现在 ...

  2. SQL概念及DDL语句

    SQL概念 SQL全称(Structured Query Language):结构化查询语句,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询和管理关系型数据库. 其实就 ...

  3. ZR#331. 【18 提高 3】括号序列(栈)

    题意 挺神仙的.首先$60$分暴力是比较好打的. 就是枚举左端点,看右端点能否是$0$ 但是这样肯定是过不了的,假如我们只枚举一次,把得到的栈记录下来 那么若区间$(l, r)$是可行的,那么$s_{ ...

  4. jsp-简单的猜数小游戏

    <%@ page language="java" import="java.util.*" pageEncoding="utf-8"% ...

  5. ABAP事件的简单用法

    1.1.事件: 用于捕获某类对象状态的改变来触发事件的方法,并进行处理 1.2.定义:可以在类或接口中进行声明 EVENTS|CLASS-EVENTS evt  EXPORTING … VALUE(p ...

  6. linux 查看dd进度

    Linux下显示dd命令的进度: dd if=/dev/zero of=/tmp/zero.img bs=10M count=100000 想要查看上面的dd命令的执行进度,可以使用下面几种方法: 比 ...

  7. Windows计算机重置TCP / IP

    传输控制协议 (TCP / IP)是Internet上使用的通信协议. 在Windows的早期版本中,TCP / IP是一个单独的可选组件,可以像其他任何协议一样删除或添加. 早期版本中,从Windo ...

  8. python之元组,列表和字典的区别

    Python语言包含6种内建的序列,其中,有两种主要的类型:列表和元组. 列表是可以修改的,而元组不可以,如果要添加或者删除某些元素,就只能用列表,为了限制某些元素,就会用到元组.一般来说,列表可以替 ...

  9. HDU 1124 Factorial (阶乘后缀0)

    题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...

  10. 用python写trojan的过程中遇到的各种问题

    由于之前已经conn, addr = s.accept() 所以改为  conn.recv spyder无法同时运行client 和 server 分别在spyder和anaconda prompt运 ...