说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科

https://baike.baidu.com/item/%E9%80%BB%E8%BE%91%E8%BF%90%E7%AE%97/7224729?fr=aladdin

现在我就当你明白了所有前置知识点了

状压dp就是通过一系列操作(例如用二进制)复杂的状态进行压缩,然后转移

现在我们来一道板子题感受一下状压dp

https://www.luogu.org/problemnew/show/P1879

看这个题很明显就可以用二进制状压,1表示种,0表示不种

但是我们要进行状态的合法判断

根据这个题的题目,我们发现,相邻位置上有两个1是不合法的,在不能种草的地上种草是不合法的,那么如何解决呢,给点时间自己想一想吧

相邻位上有两个1,那么我们可以把原数左移一位再和自己去&,如果结果大于0,就说明存在相邻位上有两个1,不合法,若等于0即为合法

证明也很简单,举几个例子就能理解了

到这里左右判断就搞定了,还有上下呢?

明白了左右,上下就更简单了,上一行和当前行也取&,同样大于0不合法,因为如果有一位上为1,那么就说明这两行在同一列上都有1,是不合法的

最后是和原图的01判断,也很简单,只需要和原图取&,若结果等于当前行的状态即为合法,反之不合法

证明:若结果不为当前状态则说明,在某一位置,当前状态为1,原图为0,所以不成立

好啦,问题都解决了,我们上代码吧

#include<iostream>
#include<cstdio>
using namespace std;
int n,m;
long long ans;
int land[][],la[],able[(<<)+];//数组注意大小
long long f[][(<<)+];
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&land[i][j]);
la[i]=(la[i]<<)+land[i][j];
}
}
for(int i=;i<(<<m);i++)
{
if(!(i&(i<<)))
{
able[i]=;
}
}
f[][]=;
for(int i=;i<=n;i++)//第i行
{
for(int j=;j<(<<m);j++)//状态为j
{
if(able[j]&&((j&la[i])==j))
{
for(int k=;k<(<<m);k++)//枚举上一行状态
{
if(!(j&k))
{
f[i][j]+=f[i-][k];
f[i][j]%=;
}
}
}
}
}
for(int i=;i<(<<m);i++)
{
ans+=f[n][i];
ans%=;
}
printf("%lld",ans);
}

感觉如何??再来道题练练手

https://www.luogu.org/problemnew/show/P2704

状态压缩dp 状压dp 详解的更多相关文章

  1. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

  2. 状态压缩动态规划(状压DP)详解

    0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...

  3. hihoCoder 1044 : 状态压缩·一 状压dp

    思路:状态压缩,dp(i, j)表示考虑前i个数且[i-m+1, i]的选择情况为j.如果要选择当前这个数并且,数位1的个数不超过q,则dp[i+1][nex] = max(dp[i+1][nex], ...

  4. hihocoder #1044 : 状态压缩·一 状压DP

    http://hihocoder.com/problemset/problem/1044 可以看出来每一位的选取只与前m位有关,我们把每个位置起始的前m位选取状态看出01序列,就可以作为一个数字来存储 ...

  5. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题

    (上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...

  8. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  9. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

随机推荐

  1. PHP composer 日常使用命令和理解

    composer的操作很多很杂,平时大都用不上,正要找又一时半会难找到 日常操作,走起 第一部分 : 安装 composer.json composer init 这个命令创建了一个 composer ...

  2. PAT甲级——1106 Lowest Price in Supply Chain(BFS)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90444872 1106 Lowest Price in Supp ...

  3. OAuthLogin2.0

    开源第三方登录组件OAuthLogin2.0 支持QQ,阿里巴巴,淘宝,京东,蘑菇街,有赞等平台   Nuget地址:https://www.nuget.org/packages/OAuthLogin ...

  4. AWR实战分析之----direct path read temp

    http://blog.sina.com.cn/s/blog_61cd89f60102eej1.html 1.direct path read temp select TOTAL_BLOCKS,USE ...

  5. 正确使用Enum的FlagsAttribute

    正确使用Enum的FlagsAttribute FlagsAttribute 标志枚举对象的值可以包括多个枚举成员,每个成员代表枚举值中的一个位域 使用步骤 添加标记[Flags] 用 2 的幂(即 ...

  6. 《springcloud 一》搭建注册中心,服务提供者,服务消费者

    注册中心环境搭建 Maven依赖信息 <parent> <groupId>org.springframework.boot</groupId> <artifa ...

  7. 打war包时无法把src/main/java里的xml文件打包上去

    maven打包默认打src/mian/resource里面的xml,而不会去src/main/java,所以 再pom.xml里的bulid节点里加上 <resources> <re ...

  8. 架构演进历程及为什么选择Spring Cloud

    单体式架构: 垂直拆分: 垂直拆分的特点: 分布式服务: 分布式服务的特点: SOA面向服务的架构: 服务治理: 微服务: 微服务结构: 服务调用方式: http客户端工具:

  9. ajax请求拿到多条数据拼接显示在页面中

    首先我们拿到的了一坨Json数据 如下 然后通过ajax请求拿到数据 在ajax的success方法中处理和使用数据: 其中包括: 用eval处理这种数据 var outStr = eval('('+ ...

  10. Ajax简单实例(基于jQuery)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...