Ab initio methods|Evidence-based methods|maximum-likelihood|branch-site|H1|H0|GO|dS/dN ratio
(Gene prediction and comparison)
使用基于基因组序列的从头预测方法(Ab initio methods)(同时分别使用头预测软件( GENSCAN和 AUGUSTUS)和预测exon和intron的剪切位点。)和基于证据支持的基因预测(Evidence-based methods)(与dog和human比较)。得到不同基因座数目。最后做了一个panda的参考基因集。
(measure the quality of gene prediction):通过比较不同基因组(代表性动物)之间的key参数,得知panda与人是相似的。(evaluate the rate of missing exons in the predicted genes)拿dog和panda与人比gene coverage(为什么dog也要比一下?因为dog与panda亲缘关系很近,所以以此作为可靠性依据),得知确实有oxen missing(因为1.末端2.因为小同时被长inron分离,所以难找);功能基因情况与dog相似。结论:预测效果好(因为可与好注释结果相比较)
(identify gene orthologues among panda, dog, mouse and human):使用InParanoid and Multiparanoid,被至少两个物种共享的同源基因,四个物种共享的同源基因,panda特有基因是狗特有基因(可能是因为dog genome多基于证据,而不是Ab initio methods预测)的两倍。
obtain greater insight into the evolutionary dynamics (进化动力学)of the genes,maximum-likelihood比较每个物种(4个:dog,human,muse,panda)和祖先的区别(同源基因扩张或缩小),得知缺失的功能在进化上有很大作用(由图可知),同时发现参与受体活动的基因是显著差异基因。

maximum-likelihood:最大似然估计:将每个位置所有可能出现的残基替换概率(每个物种和祖先)进行累加,产生特定位点的似然值
(looked for signatures of positive selection)对这些基因做似然比(branch-site)测试,建立一个模型:input:1.人和panda的同源基因;2.panda和rat, mouse and dog中的一个(此数据严格过滤),使用三种H1假设,以panda,Dog和5个物种至少一个作为假设主体,以确定panda,dog或五个物种中的一个是否受到正选择。
功能相同点:Fisher’s exact and Mann–Whitney U tests证明:Dog和 panda的共同的正向选择基因是与免疫和防卫有关基因与原先在哺乳动物中选择的正选择基因一致。GO分析得到panda的正选择基因在免疫系统中。
Fisher’s exact and Mann–Whitney U tests:H0非参数实验
GO分析:功能分析
功能不同点:从GO分析来说,熊猫(和其他6个哺乳动物基因相比)特有两个基因,在dog中两个基因被过表达。
(gain insight into some of the traits unique to the panda)
(diet):
吃竹子并不是熊猫基因决定(因为有编码消化系统基因,但未发现消化纤维的基因),而是消化系统微生物决定的。
介绍了编码五种味觉的基因,bitterness与dog有相似基因,Umami中T1R1是假基因(因为T1R1发生了移码错误),同时发现panda的该基因的ds/dn比dog低(因为panda该基因缺失)。因为该基因的缺失,使得panda虽然分类为食肉动物,但是实际上食草(该基因控制的一个受体可以感知食物中的某一个蛋白质,以此感知Umami,因为该基因缺失了,所以panda不具有该功能,所以无法感受到食物中的“鲜”)。

同义置换和非同义置换率(dS/dN ratio)的估计
(fecundity):我们发现panda genome 中有与其他哺乳动物相似的性发育和性功能的基因。值得再讨论。
Ab initio methods|Evidence-based methods|maximum-likelihood|branch-site|H1|H0|GO|dS/dN ratio的更多相关文章
- 最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定 ...
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- Don’t Use Accessor Methods in Initializer Methods and dealloc 【初始化和dealloc方法中不要调用属性的存取方法,而要直接调用 _实例变量】
1.问题: 在dealloc方法中使用[self.xxx release]和[xxx release]的区别? 用Xcode的Analyze分析我的Project,会列出一堆如下的提示:Inco ...
- 最大似然估计(Maximum Likelihood,ML)
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- Maximum Likelihood Method最大似然法
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广.这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名. 最大似然法是要解决这样一个问题:给定一组数据和一 ...
- Maximum likelihood from incomplete data via the EM algorithm (1977)
Maximum likelihood from incomplete data via the EM algorithm (1977)
- [Bayes] Maximum Likelihood estimates for text classification
Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...
随机推荐
- es6 reduce的用法
一.forEach回调函数参数,item(数组元素).index(序列).arr(数组本身)循环数组,无返回值,不改变原数组不支持return操作输出,return只用于控制循环是否跳出当前循环 二. ...
- Unite 2017 | 基于Animation Instancing的大规模人群模拟
在Unite 2017的国内技术专场,Unity技术团队为参会者们带来了Unity引擎功能相关的技术分享.今天这篇文章,将由Unity技术支持工程师金晓宇为大家分享基于Animation Instan ...
- Unity3D 自动添加Fbx Animation Event
http://blog.csdn.net/aa20274270/article/details/52528449 using UnityEngine; using System.Collections ...
- 洛谷 P3372 【模板】线段树 1
P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...
- codevs2924 数独挑战
2924 数独挑战 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description "芬兰数学家因卡拉,花费3个月时间设计出了世界 ...
- Manacher(hdu3068最长回文)
浅谈manacher算法 manacher算法是我在网上无意中找到的,主要是用来求某个字符串的最长回文子串. 不过网上的版本还不太成熟,我就修改了下. 不要被manacher这个名字吓倒了,其实man ...
- mCustomScrollbar 滚动条的使用
前两天需要设置滚动条的样式,一开始我以为只是用css设置就可以了,嗯,果然还是想的很简单,虽然可以在css设置滚动条样式,但是只是在火狐,IE浏览器上根本就不能用,所以只能使用js插件来设置滚动条的属 ...
- Jquery属性操作(入门二)
********JQuery属性相关的操作******** 1.属性 属性(如果你的选择器选出了多个对象,那么默认只会返回出第一个属性). attr(属性名|属性值) - 一个参数是获取属性的值,两个 ...
- Hdu1015&&寒假作业第二组I题
题意是A-Z对应1-26,然后给个目标数字和字符串,看看字符串里的某5个字符的组合能不能使v - w^2 + x^3 - y^4 + z^5 = target等式成立,其实多写几个循环也可以达到目的, ...
- HDU 1260 Tickets DP
http://acm.hdu.edu.cn/showproblem.php?pid=1260 用dp[i]表示处理到第i个的时候用时最短. 那么每一个新的i,有两个选择,第一个就是自己不和前面的组队, ...