题目

兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大的县,是集经济和文化于一体的一大地区,是日本西部门户,海陆空交通设施发达。濑户内海沿岸气候温暖,多晴天,有日本少见的贸易良港神户港所在的神户市和曾是豪族城邑“城下町”的姬路市等大城市,还有以疗养地而闻名的六甲山地等。

兵库县官方也大力发展旅游,为了方便,他们在县内的N个旅游景点上建立了n-1条观光道,构成了一棵图论中的树。同时他们推出了M条观光线路,每条线路由两个节点x和y指定,经过的旅游景点就是树上x到y的唯一路径上的点。保证一条路径只出现一次。

你和你的朋友打算前往兵库县旅游,但旅行社还没有告知你们最终选择的观光线路是哪一条(假设是线路A)。这时候你得到了一个消息:在兵库北有一群丧心病狂的香菜蜜,他们已经选定了一条观光线路(假设是线路B),对这条路线上的所有景点都释放了【精神污染】。这个计划还有可能影响其他的线路,比如有四个景点1-2-3-4,而【精神污染】的路径是1-4,那么1-3,2-4,1-2等路径也被视为被完全污染了。

现在你想知道的是,假设随便选择两条不同的路径A和B,存在一条路径使得如果这条路径被污染,另一条路径也被污染的概率。换句话说,一条路径被另一条路径包含的概率。

输入格式

第一行两个整数N,M

接下来N-1行,每行两个数a,b,表示A和B之间有一条观光道。

接下来M行,每行两个数x,y,表示一条旅游线路。

输出格式

所求的概率,以最简分数形式输出。

输入样例

5 3

1 2

2 3

3 4

2 5

3 5

2 5

1 4

输出样例

1/3

样例解释

可以选择的路径对有(1,2),(1,3),(2,3),只有路径1完全覆盖路径2。

提示

100%的数据满足:N,M<=100000

题解

真是精神污染= =

我们求出有多少对路径存在包含关系即可

对于路径A,如果路径B的左右端点都在A的路径上,那么A包含B

我们对每个路径左端点开一个表,储存其右端点

这样我们只需要查询每个路径上点的右端点同时也在路径上的个数

可以用dfs序 + 主席树,每个点u对应的主席树代表着到根节点的右端点的信息。

在更新u时,先继承其父亲版本,然后对于u对应的所有右端点v,在v入度处+1,出序处-1

这样一来对于u和其祖先v,两点之间的有效节点数 = 两点入度之间的值之和

因为假若有一点不在这条路径上,却夹在两点入度之间,那么一定是出入度都在其中,一加一减就没了

如果在这条路径上, 一定只有入度,还没到出度

#include<iostream>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 4000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,dfn[maxn],dft[maxn],fa[maxn][18],dep[maxn],cnt,h[maxn],ne = 2;
vector<int> end[maxn];
struct Que{int u,v;}q[maxn];
inline bool operator <(const Que& a,const Que& b){
return a.u == b.u ? a.v < b.v : a.u < b.u;
}
struct EDGE{int to,nxt;}ed[2 * maxn];
void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int rt[maxn],siz,sum[maxm],ls[maxm],rs[maxm];
int update(int pre,int l,int r,int pos,int v){
int u = ++siz; ls[u] = ls[pre]; rs[u] = rs[pre];
if (l == r) {sum[u] = sum[pre] + v; return u;}
int mid = l + r >> 1;
if (mid >= pos) ls[u] = update(ls[pre],l,mid,pos,v);
else rs[u] = update(rs[pre],mid + 1,r,pos,v);
sum[u] = sum[ls[u]] + sum[rs[u]];
return u;
}
int query(int a,int b,int c,int d,int l,int r,int L,int R){
if (l >= L && r <= R) return sum[a] + sum[b] - sum[c] - sum[d];
int mid = l + r >> 1;
if (mid >= R) return query(ls[a],ls[b],ls[c],ls[d],l,mid,L,R);
else if (mid < L) return query(rs[a],rs[b],rs[c],rs[d],mid + 1,r,L,R);
else return query(ls[a],ls[b],ls[c],ls[d],l,mid,L,R) + query(rs[a],rs[b],rs[c],rs[d],mid + 1,r,L,R);
}
void dfs1(int u){
dfn[u] = ++cnt;
REP(i,17) fa[u][i] = fa[fa[u][i - 1]][i - 1];
Redge(u) if ((to = ed[k].to) != fa[u][0]){
fa[to][0] = u; dep[to] = dep[u] + 1; dfs1(to);
}
dft[u] = ++cnt;
}
void dfs2(int u){
rt[u] = rt[fa[u][0]];
for (unsigned int i = 0; i < end[u].size(); i++){
rt[u] = update(rt[u],1,cnt,dfn[end[u][i]],1);
rt[u] = update(rt[u],1,cnt,dft[end[u][i]],-1);
}
Redge(u) if ((to = ed[k].to) != fa[u][0]) dfs2(to);
}
int Lca(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
for (int i = 0,d = dep[u] - dep[v]; (1 << i) <= d; i++)
if ((1 << i) & d) u = fa[u][i];
if (u == v) return u;
for (int i = 17; i >= 0; i--)
if (fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
return fa[u][0];
}
int solve(int u,int v,int lca){
int o = fa[lca][0],ans = 0;
ans += query(rt[u],rt[v],rt[lca],rt[o],1,cnt,dfn[lca],dfn[u]);
ans += query(rt[u],rt[v],rt[lca],rt[o],1,cnt,dfn[lca],dfn[v]);
ans -= query(rt[u],rt[v],rt[lca],rt[o],1,cnt,dfn[lca],dfn[lca]);
return ans - 1;
}
LL gcd(LL a,LL b){return !b ? a : gcd(b,a % b);}
int main(){
n = read(); m = read();
REP(i,n - 1) build(read(),read());
REP(i,m) q[i].u = read(),q[i].v = read(),end[q[i].u].push_back(q[i].v);
sort(q + 1,q + 1 + m);
dfs1(1); dfs2(1);
LL ans = 0,D = (LL)m * (m - 1) >> 1;
REP(i,m) ans += solve(q[i].u,q[i].v,Lca(q[i].u,q[i].v));
LL d = gcd(ans,D);
printf("%lld/%lld\n",ans / d,D / d);
return 0;
}

BZOJ3772 精神污染 【主席树 + dfs序】的更多相关文章

  1. BZOJ3772 精神污染 主席树 dfs序

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3772 题意概括 给出一个树,共n个节点. 有m条互不相同的树上路径. 现在让你随机选择2条路径,问 ...

  2. bzoj 3772 精神污染 主席树+dfs序

    精神污染 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 637  Solved: 177[Submit][Status][Discuss] Descri ...

  3. [BZOJ3772]精神污染 主席树上树+欧拉序

    3772: 精神污染 Time Limit: 10 Sec  Memory Limit: 64 MB Description 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位 ...

  4. 51 nod 1681 公共祖先 (主席树+dfs序)

    1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另 ...

  5. 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序

    [BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...

  6. 【BZOJ 3772】精神污染 主席树+欧拉序

    这道题的内存…………………真·精神污染……….. 这道题的思路很明了,我们就是要找每一个路径包含了多少其他路径那么就是找,有多少路径的左右端点都在这条路径上,对于每一条路径,我们随便选定一个端点作为第 ...

  7. 【SPOJ】10628. Count on a tree(lca+主席树+dfs序)

    http://www.spoj.com/problems/COT/ (速度很快,排到了rank6) 这题让我明白了人生T_T 我知道我为什么那么sb了. 调试一早上都在想人生. 唉. 太弱. 太弱. ...

  8. BZOJ 2809: [Apio2012]dispatching [主席树 DFS序]

    传送门 题意:查询树上根节点值*子树中权值和$\le m$的最大数量 最大值是多少 求$DFS$序,然后变成区间中和$\le m$最多有几个元素,建主席树,然后权值线段树上二分就行了 $WA$:又把边 ...

  9. BZOJ - 2809 dispatching 主席树+dfs序

    在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...

随机推荐

  1. Drupal7强制把主题恢复到默认主题

    今天在写Theme,退出登陆的时候无法进入管理后台. 万不得已之下只有使用数据库进行恢复. Rest Drupal Theme to Bartik SQL语句如下: WHERE type = 'the ...

  2. react的Redux基础

    redux的中文文档:http://www.redux.org.cn/ redux的英文官网:https://redux.js.org/ redux相当于vuex Redux 是 JavaScript ...

  3. es6中的promise解读

    目录 什么是promise? promise的优点 回调地狱问题  Promise的三种状态 一个简单的promise promise中的then 利用promise解决回调地狱 promise的链式 ...

  4. C++性能优化笔记

    最近着手去优化项目中一个模块的性能.该模块是用C++实现,对大量文本数据进行处理. 一开始时,没什么思路,因为不知道性能瓶颈在哪里.于是借助perf工具来对程序进行分析,找出程序的性能都消耗在哪里了. ...

  5. SpringBoot之HelloWorld仔细分析

    程序中的pom.xml文件: 一.父级标签 <parent> <groupId>org.springframework.boot</groupId> <art ...

  6. hibernate系列之一

    通过自己不断的学习框架以及相关知识的学习,自己学会总结了学习路上遇到的一些问题以及疑惑,自己现在跟着相关的学习资料又进行了一些总结和实践,希望通过自己走过的学习之路能够帮助小伙伴们解决一些学习上问题或 ...

  7. mysql 报错 Operand should contain 1 column(s)

    报错 Operand should contain 1 column(s) 原因 select 后面加了 () select (x,x,x)

  8. Linux ps与top命令

    Linux ps与top命令 这两个命令都是查看系统进程信息的命令,但是用处有点儿不同 1.ps命令--提供系统过去信息的一次性快照 也就是说ps命令能够查看刚刚系统的进程信息  命令:ps aux或 ...

  9. Spark架构与作业执行流程简介(scala版)

    在讲spark之前,不得不详细介绍一下RDD(Resilient Distributed Dataset),打开RDD的源码,一开始的介绍如此: 字面意思就是弹性分布式数据集,是spark中最基本的数 ...

  10. configParser模块详谈

    前言 使用配置文件来灵活的配置一些参数是一件很常见的事情,配置文件的解析并不复杂,在python里更是如此,在官方发布的库中就包含有做这件事情的库,那就是configParser configPars ...