[luoguP1251] 餐巾计划问题(费用流)
模型
网络优化问题,用最小费用最大流解决。
实现
把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T。
1、从S向每个Xi连一条容量为ri,费用为0的有向边。
2、从每个Yi向T连一条容量为ri,费用为0的有向边。
3、从S向每个Yi连一条容量为无穷大,费用为p的有向边。
4、从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大,费用为0的有向边。
5、从每个Xi向Yi+m(i+m<=N)连一条容量为无穷大,费用为f的有向边。
6、从每个Xi向Yi+n(i+n<=N)连一条容量为无穷大,费用为s的有向边。
求网络最小费用最大流,费用流值就是要求的最小总花费。
分析
这个问题的主要约束条件是每天的餐巾够用,而餐巾的来源可能是最新购买,也可能是前几天送洗,今天刚刚洗好的餐巾。每天用完的餐巾可以选择送到快洗部或慢洗部,或者留到下一天再处理。
经过分析可以把每天要用的和用完的分离开处理,建模后就是二分图。二分图X集合中顶点Xi表示第i天用完的餐巾,其数量为ri,所以从S向Xi连接容量为ri的边作为限制。Y集合中每个点Yi则是第i天需要的餐巾,数量为ri,与T连接的边容量作为限制。每天用完的餐巾可以选择留到下一天(Xi->Xi+1),不需要花费,送到快洗部(Xi->Yi+m),费用为f,送到慢洗部(Xi->Yi+n),费用为s。每天需要的餐巾除了刚刚洗好的餐巾,还可能是新购买的(S->Yi),费用为p。
在网络上求出的最小费用最大流,满足了问题的约束条件(因为在这个图上最大流一定可以使与T连接的边全部满流,其他边只要有可行流就满足条件),而且还可以保证总费用最小,就是我们的优化目标。
还是得好好理解这个建图。
然而这个代码在洛谷上超时了,不会zkw费用流QAQ
——代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 4010
#define M 100005
#define INF ~(1 << 31)
#define min(x, y) ((x) < (y) ? (x) : (y)) int a, p, m, f, n, g, s, t, cnt;
int head[N], to[M], val[M], cost[M], next[M], dis[N], pre[N];
bool vis[N];
long long sum; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z, int c)
{
to[cnt] = y;
val[cnt] = z;
cost[cnt] = c;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool spfa()
{
int i, u, v;
std::queue <int> q;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
memset(dis, / , sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
vis[u] = ;
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] > dis[u] + cost[i])
{
dis[v] = dis[u] + cost[i];
pre[v] = i;
if(!vis[v])
{
q.push(v);
vis[v] = ;
}
}
}
}
return pre[t] ^ -;
} int main()
{
int i, x, d;
a = read();
s = , t = (a << ) + ;
memset(head, -, sizeof(head));
for(i = ; i <= a; i++)
{
x = read();
add(s, i, x, ), add(i, s, , );
add(i + a, t, x, ), add(t, i + a, , );
}
p = read();
m = read();
f = read();
n = read();
g = read();
for(i = a + ; i <= a + a; i++) add(s, i, INF, p), add(i, s, , -p);
for(i = ; i < a; i++) add(i, i + , INF, ), add(i + , i, , );
for(i = ; i <= a - m; i++) add(i, i + a + m, INF, f), add(i + a + m, i, , -f);
for(i = ; i <= a - n; i++) add(i, i + a + n, INF, g), add(i + a + n, i, , -g);
while(spfa())
{
d = 1e9;
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]]) d = min(d, val[i]);
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]])
{
val[i] -= d;
val[i ^ ] += d;
}
sum += (long long)dis[t] * d;
}
printf("%lld\n", sum);
return ;
}
[luoguP1251] 餐巾计划问题(费用流)的更多相关文章
- LuoguP1251 餐巾计划问题(费用流)
题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...
- 洛谷.1251.餐巾计划问题(费用流SPFA)
题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...
- P1251 餐巾计划问题 费用流
https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图
#6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- Vijos1891 学姐的逛街计划 【费用流】*
Vijos1891 学姐的逛街计划 描述 doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课. 偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天. doc 很忧伤, ...
- HDU 6118 2017百度之星初赛B 度度熊的交易计划(费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 【bzoj3291】Alice与能源计划 模拟费用流+二分图最大匹配
题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验. 为了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...
- 【HDOJ6118】度度熊的交易计划(费用流)
题意: 度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个片区能够花费a[i]元生产1个 ...
- HDU 6118 度度熊的交易计划(费用流)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6118 [题目大意] 给出一张无向边权图,每个点最多可以生产b[i]商品,每件代价为a[i], 每个 ...
随机推荐
- 基于Activiti5.15.1 自定义用户、组(User,Group)实现
基于Activiti5.15.1 自定义用户.组(User,Group)实现 本人刚接触Activiti,最近工作中需要将Activiti中原有的用户,组(ACT_ID_USER,ACT_ID_GRO ...
- MyEclipse7.0 M1下载和注册码
首先介绍下,这款MyEclipse7.0 M1已经内置了Eclipse3.4,所以无需再去下载. 1.下载地址: http://downloads.myeclipseide.com/downloads ...
- apropos linux
Apropos adj. 恰当的,关于,就...而言 adv. 顺便地,恰当地 All my suggestions apropos the script were accepted. 我所有有关该剧 ...
- 数据库连接池 dbcp与c3p0的使用区别
众所周知,无论现在是B/S或者是C/S应用中,都免不了要和数据库打交道.在与数据库交 互过程中,往往需要大量的连接.对于一个大型应用来说,往往需要应对数以千万级的用户连接请求,如果高效相应用户请求,对 ...
- Python——基本运算符
计算机不止可以进行加减乘除,还可以进行多种运算,比如算数运算,逻辑运算,赋值运算等 算数运算 以下假设变量:a=10,b=20 比较运算 以下假设变量:a=10,b=20 赋值运算 以下假设变量:a= ...
- fei33423 工作 职场 格言
对老板: 1. 老板不知道你做的事情(目标设定) 2. 老板要的是规划(对上报告), 自己给自己设定 金字塔四位下的目标,各种维度.如何细化. 2.1 明确老板期望 2.2 与老板达成共识 2.3 ...
- iOS应用架构谈part4-本地持久化方案及动态部署
前言 嗯,你们要的大招.跟着这篇文章一起也发布了CTPersistance和CTJSBridge这两个库,希望大家在实际使用的时候如果遇到问题,就给我提issue或者PR或者评论区.每一个issue和 ...
- Android读书笔记四
第四章 这是一次源代码之旅,学到了如何下载和编译Android源代码和Linux内核源代码.来详细阐述一下一些具体过程 一.Android源代码下载环境 1.安装下载Android源代码的环境配置 ( ...
- char与varchar的区别与联系
char是字节类型,varcahr是字符类型 1.char(20) 存放的是字节,utf-8中文字符占三个字节,GB18030兼容GBK兼容GB2312中文字符占两个字节,ISO8859-1是拉丁字符 ...
- hibernate简介以及简单配置
Hibernate简介: Hibernate是一个开源对象关联关系映射的框架,他对JDBC做了轻量级的封装,使我们可以通过面向对象的思想操作数据库. 为什么要用Hibernate: 1: 对JDBC访 ...